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 key aspect of the precision of a mobile robot’s local-
ization is the quality and aptness of the map it is us-

ing. A variety of mapping approaches are available that 
can be employed to create such maps – with varying de-
grees of effort, hardware requirements and quality of the 
resulting maps. To create a better understanding of the 
applicability of these different approaches to specific ap-
plications, this paper evaluates and compares three dif-
ferent mapping approaches based on simultaneous local-
ization and mapping, terrestrial laser scanning as well as 
publicly accessible building contours. 

[Keywords: mobile robots, mapping, map evaluation, localiza-
tion] 

in wichtiger Aspekt für die präzise Lokalisierung 
von mobilen Robotern ist die Qualität und Eignung 

der verwendeten Karte. Eine Vielzahl von Ansätzen ste-
hen zur Erzeugung solcher Karten zur Verfügung, die in 
Punkten wie Aufwand, benötigter Hardware und nicht 
zuletzt der Qualität ihrer Ergebnisse teils stark variieren. 
Um ein besseres Verständnis von diesen Ansätzen und de-
ren Eignung für konkrete Anwendung zu schaffen, wer-
den in dieser Arbeit drei verschiedene Ansätze evaluiert 
und miteinander verglichen: SLAM, Terrestrischer La-
ser Scanner und öffentlich verfügbare Gebäudekonturen. 

[Schlüsselwörter:Mobile Roboter, Kartenerstellung, Karteneva-
luation, Lokalisierung] 

 

 

 

1 INTRODUCTION 

Localization is one of the most crucial tasks for mo-
bile robots. Being able to determine the robot’s location is 
vital for safe navigation and thus the success of the overall 
process. For this, robots typically use a 2D map that shows 
the contours of the respective area visible to the robot. The 
robot then matches its sensor data with these contours to 
compute its position. An increased resemblance to reality 
and higher levels of detail lead to a higher level of preci-
sion in the robot’s localization. 

Multiple approaches to creating such maps have been 
presented in the literature that show different benefits and 
drawbacks not only in the resulting maps but also in the 
effort and technical equipment required in the mapping 
process. The ones employing simultaneous localization 
and mapping (SLAM) are the most prominent approaches 
in the literature [1], [2]. These rely on the robot itself and 
thus typically yield results with the same level of detail as 
supported by its sensors. However, a lot of algorithmic ef-
fort is put into reducing the amount of inaccuracy and 
noise created by the hardware and its movements. An ex-
tensive, robot-specific setup and parametrization phase are 
necessary to endure the validity and quality of the map. 
Other approaches such as [3] employ stationary terrestrial 
laser scanners (TLS) to create a map that shows a high 
level of detail and precision. However, the external hard-
ware introduces additional acquisition costs and the map-
ping process can be time-consuming and may require ex-
tensive postprocessing effort. Lastly, approaches such as 
[4] make use of publicly accessible building contours 
(PABC) extracted from satellite data. These approaches 
require a low amount of effort and no specific hardware in 
their process. However, they require data of the respective 
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area to be available and generate maps with a low level of 
detail. 

With their individual benefits and drawbacks, none of 
these approaches is suited or even applicable for every 
kind of robotic application. To support the decision pro-
cess, several evaluations and benchmarking methods have 
been introduced in the literature [5–8]. However, these 
only concentrate on quantifying the quality of the map and 
do not consider the effort or specific hardware require-
ments. It is also unclear to what extent these quantitative 
measures of map quality correlate to their aptness for a 
specific application. In addition, current publications only 
compare the results of different implementations of the 
same approach. To the best of our knowledge, a cross-ap-
proach evaluation of mapping systems has not been pub-
lished yet. 

To address this research gap, this contribution will 
compare three different mapping approaches, namely 
SLAM, TLS and PABC. This is done using a novel evalu-
ation approach that combines the quantitative analysis of 
map quality, effort and hardware requirements with a prac-
tical assessment of the constructed maps in a real-world 
scenario. In addition, the results will be used to examine 
correlations between the required effort and the resulting 
map quality. 

The contribution is structured as follows: Section 2 
gives an overview of map evaluation methods presented in 
the literature. In Section 3, the map creation process of 
each of the three mapping approaches is presented, as well 
as the method that is followed to carry out the evaluation. 
The selection of the candidate implementation for each 
mapping approach as well as the area in which the evalu-
ation took place and the hardware that has been used is 
presented in Section 4. The results are presented and dis-
cussed in Section 5. Finally, Section 6 concludes this paper 
and states potential for future work. 

2 MAPPING APPROACH EVALUATION METHODS 

The methods to evaluate mapping approaches pre-
sented in the literature can be categorized into trajectory-
based, procedure-based and map-based evaluation meth-
ods. All of them aim to provide a consistent and reproduc-
ible evaluation. 

Trajectory-based evaluation methods compare the tra-
jectory provided by a localization algorithm to a ground 
truth trajectory. It is mainly used to evaluate the localiza-
tion performance of SLAM approaches with one another 
and evaluates only implicitly the quality of the map. This 
type of evaluation often makes use of open-access bench-

mark datasets. They provide different sensor data (e.g. Li-
DAR, IMU, camera) as well as ground truth monitoring of 
the trajectory in suitable surroundings. Examples of such 
benchmark datasets are the KITTI-dataset provided by the 
KIT [9] and DARPA provided by the MIT [10]. Both in-
clude sensor data for visual- and laser-SLAM algorithms.  

The difference between ground truth and the trajec-
tory built by SLAM is evaluated using different metrics. 
Sturm et al. use the Absolute Pose Error (APE) for esti-
mating global consistency and the Relative Pose Error 
(RPE) to measure the local consistency of the provided tra-
jectory over a defined period of time [11]. Burgard et al. 
manually correct the calculated trajectory as ground-truth. 
They also use a relative error which is independent of pre-
vious localization imprecisions [6, 7]. Dhaoui et al. sug-
gest using the Hausdorff distance to measure the localiza-
tion error [12]. Most of the approaches require a precise 
ground truth measure which is expensive in terms of work-
load. Abdallah et al. therefore use GPS-Data as a reference 
and referenced air view pictures as map reference [13].  

The second category of evaluation methods is proce-
dure-based evaluation. In the literature, this form of eval-
uation mostly considers SLAM approaches. A well-known 
procedure for the evaluation of map generation procedures 
is the theoretical evaluation of selected criteria. These can 
include parameters used for the calculation of the robot po-
sition, the type of map, sensor information used or as-
sumptions on which the SLAM methods are based [14]. 

Often the measurement of the CPU utilization or the 
processed frames per second (FPS) as well as memory uti-
lization is evaluated. On the one hand, conclusions can be 
drawn as to which robot platforms are suitable for the re-
spective process. On the other hand, basic technical re-
quirements that need to be fulfilled in order to use the 
SLAM algorithm are analyzed [15–17]. 

The third category of map-based evaluation considers 
the quality of the end product, meaning the map itself. In 
order to evaluate the map quality independent of the map-
ping process and localization performance, additional 
map-related metrics are presented below. These include 
the shape of the map, distances between two superimposed 
maps, artificial and natural features in the map and infor-
mation content of the map.  

The structure-based map evaluation deals with the de-
viations of maps to a ground truth. Often the average de-
viation between a reference map and the examined map is 
calculated. For the quantitative comparison, the ADNN 
(Average Distance Nearest Neighbor) algorithm can be 
used [15]. Another way of evaluating the similarity of two 
maps is the Structural Similarity Index Measure. It is used 
to measure the optical correspondence of two images [12]. 
In addition, the ICP (Iterative Closest Point) method is also 
used to iteratively search for the best match between maps. 
After a certain number of iterations, the deviation between 



DOI: 10.2195/lj_proc_ziegenbein_en_202211_01  
URN: urn:nbn:de:0009-14-56116 

  
© 2022 Logistics Journal: Proceedings – ISSN 2192-9084          Page 3 
Article is protected by German copyright law 

the maps is calculated in form of the maximum, the aver-
age and the minimum error [12]. 

Another map-based alternative is the feature-based 
methodology. Here, individual features that are present in 
both, the reference map and the map under study, are iden-
tified and compared. One example for such features are 
corners in walls and other obstacles. The more the number 
of corner deviates from other maps, the higher the proba-
bility of inconsistencies and artifacts in the map. The Har-
ris Corner Detector is often used to identify corners in 
maps [18, 19]. An alternative approach to find features in 
a map is the transformation of the map into Hough space 
and the subsequent identification of extrema using SIFT 
(Scale-invariant feature transform) [18, 20]. The propor-
tion of assigned features of the map to the total number in 
a reference map then serves as a quality measure for eval-
uation. Another possibility is presented by Chen et al. with 
LSF (Least Square Fitting), where rotations and transla-
tional parameters are first computed to align the reference 
map. Then the RMSE (Root Mean Square Error) between 
selected feature points is calculated and compared [5].   

Schwertfeger et al. introduce the Fiducial Map Metric 
as a way to evaluate features independently of a reference 
map. Artificial features in the form of cylinders separated 
by a wall are set up. The position of the fiducials in reality 
in comparison to their corresponding position in the map 
is used for the evaluation [21]. Further approaches to map 
evaluation are the optical comparison or the superimposi-
tion of maps in order to recognize at which point deviation 
exists [17, 22]. 

Existing evaluation approaches largely consider 
SLAM as mapping method. In some cases, data from a ter-
restrial laser scanner is used as ground truth or reference 
map due to its high accuracy. A procedure to compare 
mapping methods with different approaches has not been 
published yet. A practice-oriented easily applicable cross-
approach evaluation over all categories cannot be found. 
Therefore, in the following a new method to evaluate map-
ping procedures and the quality of the map as well as its 
localization performance is introduced and executed ex-
perimentally on three different mapping approaches.   

3 METHOD 

This chapter will introduce the method used in this 
paper. To do so, the process of mapping in the three dif-
ferent categories SLAM, TLS and PABC will be pre-
sented. Afterward, the evaluation method will be dis-
played.  

The SLAM mapping process can be divided into three 
steps. First, the sensor data is gathered using a mobile ro-
bot. For this purpose, a route through the test area is 
planned with the goal of reaching every area at least twice. 

The LiDAR, odometry and IMU data is saved in record-
ings to make the process of mapping reproducible and to 
allow parameter optimization on the same data set. After 
selecting a SLAM-Algorithm it is installed on a work-
station. This allows the algorithm to be executed without 
being limited by the robot’s computing power. Second, the 
algorithm is parameterized to according to the robot’s 
hardware setup. Third, the recorded sensor data is used to 
optimize the parameters of the algorithm iteratively. Once 
a satisfactory setup is found, the map is exported.  

For TLS the process is divided into four steps. First, 
the test area is examined to plan the scan positions such 
that it won’t create blind spots. Artificial, spherical targets 
are used for an easier registration of the different scans. 
These are positioned such that two consecutive scans share 
at least two visible spheres. Second, the scans are con-
ducted, moving the TLS and the spheres manually to each 
planned position. Third, the resulting scans are linked with 
one another in the scan registration. This results in a 3D-
Point Cloud which is subsequently cleaned from irrelevant 
data for the 2D-representation, such as balconies, which 
are not in the field of view of the robot or the floor. In the 
last step a top-down 2D-representation of the point cloud 
is extracted and formatted to be used as a map.  

The procedure for using PABC requires three steps. 
First, a suitable database for the map is obtained. The map 
requires a high resolution and a high level of detail. Sec-
ond, the contours of buildings and other important features 
in the test area are extracted from the database. Third, the 
building contours are transformed and exported into the 
required black and white picture format. 

To address the identified research gap, a practice-ori-
ented cross-approach evaluation is used that takes all three 
before mentioned evaluation approaches into considera-
tion and can therefore give an overview of the localization 
performance, map accuracy and the mapping process. The 
basis of the evaluation approach is shown in Figure 1. The 
evaluation procedure is described in the following.  

First, the three mapping approaches are conducted in 
a suitable environment. The time required to create the 
maps with the three different mapping approaches is rec-
orded for the later calculation of a quality to effort ratio. 
Specific data to be recorded are defined, and reference 
measurements are performed. Test scenarios are used to 
evaluate the map generation methods.  
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The test scenarios are then applied to verify and eval-
uate the three mapping methods. For this purpose, on the 
one hand, a geometric verification is carried out, in which 
the deviation of the created maps from reality is examined. 
This is done by calculating the deviation between refer-
ence measurements and the corresponding measurements 
in the created maps. The measurements in the maps are 
taken using the RViz-Measuring tool [23]. Furthermore, it 
is qualitatively examined whether the three maps contain 
a complete image of the test environment.  

Afterwards, the resulting maps are validated experi-
mentally by examining their suitability for localization 
with AMCL (Adaptive Monte Carlo Localization). For 
this purpose, the previously recorded sensor data of the test 
scenarios are used for localization using AMCL in each 
map and the resulting trajectory is recorded. It is then ex-
amined by calculating the deviation between the recorded 
trajectory and the ground truth positions at 12 different 
checkpoints. Further, the completeness and correctness of 
the trajectory is investigated qualitatively. In order to re-
veal possible weaknesses of the methods, influencing fac-
tors such as different soils or environments are evaluated 
by examining individual areas with these characteristics. 
The result of the three methods is then compared. 

Finally, the quality to effort ratio is calculated using 
the time required to execute the mapping approaches, the 
map accuracy as well as the localization trajectory accu-
racy. 

4 EXPERIMENTAL SETUP 

The setup used for conducting the experiments con-
sists of three main aspects. First, there is the selection of 
the test area to conduct the evaluation of the three mapping 
approaches. Second, a suitable approach of each of the cat-

egories SLAM, TLS and PABC is selected. Third, the ref-
erence measurements for the defined experiments are 
taken.  

The area that has been selected for this evaluation is 
part of the Hamburg University of Technology (TUHH) 
campus. The area is shown in Figure 2, the boundary of 
the area to be mapped is shown in red. The area accessible 
to the robot is shaded in blue and extends over a size of 
220 m x 50 m. The drivable area corresponds to approxi-

Figure 2: Test Area at the Hamburg University of Technology 

Figure 1: Basis of the Evaluation approach 



DOI: 10.2195/lj_proc_ziegenbein_en_202211_01  
URN: urn:nbn:de:0009-14-56116 

  
© 2022 Logistics Journal: Proceedings – ISSN 2192-9084          Page 5 
Article is protected by German copyright law 

mately 6,500 m² and the area to be mapped to approxi-
mately 28,000 m². The test area contains a diverse envi-
ronment (see Figure 3) with different surface conditions, 
such as large stone pavement, small stone pavement, sandy 
soil and concrete stone pavement.  

The map shows differences in height of more than 3 m 
and varying degrees of vegetation in the different areas. A 
180 m long building which is surrounded by the drivable 
area is located in the middle of the test field. In addition, 
there is regular traffic in the form of pedestrians and cy-
clists, as well as irregular traffic in form of vehicles. 

For the three mapping approaches a suitable algo-
rithm and procedure are chosen. A laser SLAM package 
was selected due to the hardware setup of robot used for 
the experiments. The route for the data recording has been 
selected to ensure the highest possible illumination of the 
area and has been followed twice, once from each direc-
tion, in order to reduce possible interference from passers-
by or vehicles. In addition to the mobile transport robot 
“Laura” developed in the scope of the TaBuLa-LOG pro-
ject [24] used for recording (see Figure 4) a workstation 
with Ubuntu operating system and the ROS packages 
Google Cartographer and Rosbag are used for this pur-
pose. 

For TLS, a FARO Focus S70 is used in combination 
with the associated Faro Scene software. 23 scan and 34 
sphere positions are planned at which a total of 34 full 
scans and 54 detail scans of spheres were taken. For the 
main scans a resolution of 44 million points was used and 
data from supporting sensor such as GPS, compass and in-
clinometer was captured. The acquired scans are registered 
and the resulting point cloud is cleaned using Faro Scene. 
Finally, Adobe Photoshop is used to scale the image and 
convert it to the required format. The TLS-setup at the TU-

Campus is shown in Figure 5. 

OpenstreetMap is used as PABC data provider (see 
Figure 6). The building contours are derived using Adobe 
Photoshop. Then the image file is converted into the re-
quired file format and meta data is extracted using Adobe 
Photoshop.  

The reference measurements for the quantitative eval-
uation of the map quality are taken using a PeakTech 
2800A laser range finder mounted on a tripod. 25 refer-
ence measurements are taken across the campus as shown 
in Figure 7.  

These include distances between buildings as well as 
the length of building sections to make sure that displace-
ments or distortions can be recorded. For the evaluation of 
the maps, the absolute deviation is first calculated as the 

Figure 4: Transport Robot Laura 

Figure 5: TLS at TU-Campus 

Figure 3: Different surface conditions in the test area 



DOI: 10.2195/lj_proc_ziegenbein_en_202211_01  
URN: urn:nbn:de:0009-14-56116 

  
© 2022 Logistics Journal: Proceedings – ISSN 2192-9084          Page 6 
Article is protected by German copyright law 

difference between the reference value and the digital 
measured value measured in the respective map. Then the 
average deviation is calculated over all measuring points 

and maxima and minima are determined.  

For the experimental validation of the localization, 
the transport robot “Laura” is used (see Figure 4). The ro-
bot is based on a Clearpath Jackal and can transport a 
stacking container in Euronorm format 400 x 300 mm. In 
addition to four Intel RealSense stereo cameras for close-
range monitoring, Laura is equipped with a Velodyne 

VLP-16 LiDAR. This together with odometry data is used 
for localization with AMCL [25].  

For the quantitative evaluation of the localization per-
formance, a route passing 12 checkpoints (see Figure 8) is 
first recorded in a Rosbag file. At each checkpoint the dis-
tances to surrounding features like walls on the map were 

measured using the laser range finder. The test drive was 
23 min long, the corresponding Rosbag-file has a size of 
7.6 GB recorded data. 

Using AMCL and the respective map as a basis, the 
trajectory traveled during the test drive is recorded. The 
distance at the checkpoints between the trajectory and the 
features are measured using RViz. Then the deviation of 
all corresponding points to the reference measurement is 
calculated. After that, the average distance is calculated 
and maxima and minima are determined. 

5 RESULTS 

In this section the results of the evaluation are 
described and discussed. Starting with the results of the 
map-based evaluation, then the localization-based 
evaluation and lastly the procedure-based evaluation. 
Finally, the results will be condensed and discussed.  

5.1 MAP-BASED EVALUATION 

The results of the map-based evaluation show that all 
three presented methods for map generation are able to 

reproduce the environment true to scale. There is a big 
difference in the level of detail of the environment 

Figure 6: OSM-Basis for PABC 

Figure 7:  Reference Measurements Geometric Verification 

Figure 8: Checkpoint 1-12 
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represented in the map, though. The resulting maps are 
shown in Figure 9. The following will use these to present 
the results.  

Qualitatively it is recognizable that the arrangement 
of buildings to each other in the maps is basically correct. 
However, the PABC map has a much lower level of detail. 
This can be seen for example in fields B2, D2 and E6. 
Here, details such as steps, garbage containers or 
vegetation are missing.  The map only contains the 
building contours that are also visible in the source OSM 
map.There is also a difference in range to be seen between 
the SLAM map and the TLS map. Whereas the robot-
based SLAM approach is only able to map the features 
around the actually driven passage, the TLS map also 
shows contours of further away buildings and obstacles. 
An example can be seen in D3. 

The results of the quantitative evaluation of the map 
quality are shown in Table 1. The average and median 
deviation as well as the minimum and maximum deviation 
were determined using the 25 reference measurements 
recorded beforehand. 

The data in Table 1 shows that TLS produces the most 
accurate map. With a deviation ranging from 0.05 cm to  
5.60 cm averaging at 1.57 cm. The median of 1.02 cm 
shows that half of the measurements show a deviation of 
about 1 cm or less. The deviation at 21 of 25 measurements 
is less than 3 cm. 

Table 1: Results of Geometric Verification 

 SLAM TLS PABC 
    Average 5.44 cm 1.57 cm 55.59 cm 
Median 4.39 cm 1.02 cm 44.25 cm 
MAX 15.54 cm 5.60 cm 130.13 cm 
MIN 0.67 cm 0.05 cm 0.60 cm 

 

The SLAM map, while showing an average deviation 
about 3.5 times as high as the one of the TLS map, still 
shows a respectable level of accuracy. The median is 

slightly lower than the average deviation, which indicates 
that there are highly inaccurate outlier measurements. This 
is confirmed by the fact, that 17 of 25 measurements show 
a deviation below the average of 4.39 cm.  

The results for PABC confirm the impression of the 
qualitative analysis. The deviations are significantly 
higher than in the SLAM or TLS map. The average 
deviation of 55.59 cm is slightly more than the width of 
the transport robot with which the localization-based 
evaluation is conducted. The deviation is more than 10 
times higher than in the SLAM map. The minimum 
deviation, on the other hand, is similar to the SLAM map, 
which shows that the accuracy in some areas of the map is 
acceptable. The maximum, on the other hand,  exceeds the 
other two mapping methods by far.  

5.2 LOCALIZATION-BASED EVALUATION 

The results of the localization-based evaluation show 
that all three presented methods for map generation are 
able to keep localization accurate for the majority of the 
drive. Figure 10 shows the trajectories derived from 
AMCL colored in in red (SLAM), orange (TLS) and blue 
(PABC). For simplicity, this figure uses the TLS map as it 
is the most acurate.  

The qualitative examination of the trajectories shows 
that the localization using the TLS map and SLAM map 
shows mostly equivalent accuracy. Only in quadrant B4 
they show a difference. Considering that the recorded 
journey started and ended at the same position 
(Checkpoint 1), it can be assumed that the localization 
with the help of the maps was not successful for any map 
towards the end. The localization confidence obviously 
decreases in the area of  A2 and B3. The trajectory of the 
map created with PABC shows further inaccuracies in 

Figure 9: Results of the three mapping approaches SLAM, TLS and PABC 
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field B1 (see Figure 11) and B2, where it intersects with 
the contours of the buildings.  

Due to the fact that all three trajectories have already 
lost localization at checkpoint 10, only checkpoints 1-10 
are considered in the following quantitative evaluation. 
The failing localization at checkpoints 11 and 12 will be 
addressed at the end of this section. The results in the form 

of maximum and minimum deviation as well as average 
and median deviation are shown in Table 2.  

The data confirms the first impression that the 
localization performance based on the SLAM and TLS 

map are comparable. Though, the TLS map achieves a 
slightly lower average deviation of 6.23 cm compared to 
the the SLAM map (7.23 cm), the minimum and maximum 
deviation using the SLAM map are lower than using the 
TLS map. However, evaluating the median localization 
deviations reveals that the SLAM map shows outliers with 
high accuracy that affect the average and that most of the 
values are higher than average whereas the TLS map 
shows the exact opposite characteristic.  

Table 2: Localization deviations in each map 

 SLAM TLS PABC 
    Average 7.23 cm 6.23 cm 49.71 cm 
Median 8.83 cm 3.91 cm 36.30 cm 
MAX 13.56 cm 21.50 cm 200.98 cm 
MIN 0.25 cm 0.32 cm 5.30 cm 

The average deviation of the localization trajectory 
using the PABC map is 49.71 cm which is about 7 times 
the deviation of the SLAM map and about 8 times the 
deviation of the TLS map. In addition, the maximum 
deviation of SLAM and TLS is lower than the average of 
the PABC. The minimum deviation using the PABC map 
is about the average deviation of TLS. The maximum 
deviation of 200.98 cm with PABC testifies to a significant 
deviation in localization.  

As mentioned in the beginning, the experiments show 
that the robot’s localization fails in the area A2 and B3 (see 
Figure 10) for all three maps. Figure 12 shows photos of 
this locationFigure 12. An explanation for that failure is 
could be that the contour of the building on the one side of 
the path shows very few distinguishable features that 
might not suffice for localization. Another explanation 
could be the slope on the opposite side, which leads to a 
noisy contour who’s exact position can change drastically 
depending on the robot’s lean angle. 

5.3 PROCEDURE-BASED EVALUATION 

Figure 12: Area in which localization failed 

Figure 10: Trajectories resulting from localization experiments 

Figure 11: Detailed view of quadrant B1 of Figure 10 
showing a trajectory intersecting building contours 
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This chapter presents the results of the evaluation of 
the procedure for creating the maps in the test area using 
SLAM, TLS and PABC.  Table 3 shows the amount of 
data recorded as well as the time required to create the 
initial map (gross time) and the time required to create 
subsequent maps (net time) without initial setup. 

Table 3: Overview procedure-based evaluation 

 SLAM TLS PABC 
    Used Data 14.1 GB 246 GB 0.0052 GB 
Gross Time 54.32 h 90.5 h 1.08 h 
Net Time 2.32 h 90.5 h 1.08 h 

Table 3 shows that the initial amount of data recorded 
with TLS (246 GB) far exceeds the data required for 
SLAM (14.1 GB) and PABC (0.0052 GB). It also shows 
that the procedure to create a map using TLS took 
significantly more time (90.5 h) than any of the other 
approaches. The map creation using SLAM required 54.32 
h. However, a majority of this was spent in the initial setup 
and parameterization. Considering this only needs to be 
performed once, this can be reduced to a net time of 2.32 h 
for future map creation. PABC, on the other hand, requires 
the least amount of time. Since data acquisition is omitted 
and it is mainly a matter of deriving contours from existing 
map material, the time required is expectedly low.  

5.4 DISCUSSION 

Figure 13 shows the cumulated quantitative 
evaluation results of the procedure, localization and 
resulting map of each evaluated approach by putting the 
required effort and accuracy of the results into relation. 
Since there is a significant difference in gross and net time 
required for the SLAM approach, it is shown twice in this 
figure: SLAM 1 represents the evaluation results of the 

first map creation, SLAM 2 the ones of any subsequent 
map creation. 

The diagram shows that SLAM with previously set up 
parameters performs best in comparison. Since it shows 
both a high map accuracy and a high localization accuracy 
and requires slightly over two hours (2.32 h). Including the 
initial effort, however, the time required is higher 
(54.32 h). Nevertheless the precision advantage over 
PABC should make up for the higher effort needed to 
achieve it. Overall it can be said that SLAM with the 
Google Cartographer is a suitable alternative for mapping, 
but still the localization in some areas did not work out.   

The PABC results show that the required time is very 
low, but also the resulting map has a significantly lower 
feature density than the other two. The results show that 
it’s applicability highly depends on the information 
provider as well as the accuracy requirements of the 
application. Further research effort should go into a more 
accurate data provider and into ways to enhance this data 
with, for example, aerial photography data. Generally 
speaking, PABC can be used in those mobile robotics 
applications in which a low level of details is sufficient. It 
is therefore a low-cost and low-effort alternative. Further, 
it shows high potential if better or more accurate 
information sources would be available. 

TLS offers a highly accurate map, however, it comes 
with a high amount of manual effort. Only considering the 
quality of the results, TLS is the best candidate in this 
comparison. One could reduce the required effort by 
automating certain steps in the proceduresuch as the 
cleaning of the point cloud or the recording. One might 
achieve the former by using a height map to remove 
ground planes. To automate the data recording, the TLS 
and reference objects could be moved from one 

Figure 13: Times required to create a map and their deviation from ground truth 



DOI: 10.2195/lj_proc_ziegenbein_en_202211_01  
URN: urn:nbn:de:0009-14-56116 

  
© 2022 Logistics Journal: Proceedings – ISSN 2192-9084          Page 10 
Article is protected by German copyright law 

scanposition to the next by autonomous robots.  With its 
high accuracy TLS can be considered a reasonable 
alternative to SLAM. A noteworthy finding is that 
although the precision of the TLS map is increased by a 
factor of 3.5, the localization is comparable.  

The evaluation conducted showed plausible results. 
The used metrics are suitable for identifying weaknesses 
of the mapping approaches. The recorded data especially 
in case of the robot data can be used to carry out future 
comparisons of other mapping approaches. The chosen 
test area covers different challenges of public space and is 
therefore a good basis for the evaluation. Though, future 
research should carry out this evaluation in a different area 
to further investigate this process. This will also yield 
more insights on the extent to which SLAM 
parametrization is transferrable to different locations.  

Still, there are some aspects that need to be amended 
for better reliability of the results. First of all for the 
localization there were only 12 checkpoints used to 
measure the deviation, which only gives a brief overview 
of the localization performance. A larger amount of 
checkpoints or different way of capturing a ground truth 
trajectory could increase the expressiveness of the 
evaluation results. One might include a separate sensor 
such as a highly accurate GNSS reference to provide 
ground truth data.  

In Figure 7 it can be seen that no reference 
measurements were taken on the left side of the test area. 
Due to the terrain on this side, no reliable measurements 
were possible with the given hardware equipment. More 
precise evaluation data in this area would have been 
necessary, most notably because it is the area in which the 
localization in all maps showed the lowest level of 
accuracy. 

Another aspect which could be improved is the usage 
of the RViz-measuring tool. It calculates the distance 
between two points marked manually using the pixel 
distance and the resolution. Using a suitable automated 
measuring method would lead to less inaccuracies and less 
required manual effort. 

Finally, the time expenditure that has been recorded 
during the experiments is subject to the user’s level of 
experience with the respective system. It should be 
considered a guideline for inexperienced users rather than 
an absolute value. 

6 CONCLUSION 

In this paper, three different mapping approaches 
have been evaluated and compared with regards to re-
quired hardware and effort as well as the overall quality of 
the resulting maps and their applicability for real-live ap-
plications. The compared mapping approaches are based 

on simultaneous localization and mapping (SLAM), ter-
restrial laser scanning (TLS) and publicly available build-
ing contours (PABC). The specific implementations of 
these approaches that were evaluated were the Google 
Cartographer [26], a Faro Focus S70 with Faro Scene [27], 
and building contours provided by OpenStreetMap [28]. 

For the comparison a 28.000 m² area at the campus of 
the Hamburg University of Technology was selected and 
mapped with each of the mapping approaches. Ground 
truth data of buildings and previously selected checkpoints 
was gathered using a laser distance meter. This data has 
been used for the first step of the evaluation, a quantitative 
analysis of the resulting maps. In the second step a mobile 
robot was driven along multiple, predefined routes across 
the selected area and past the aforementioned checkpoints. 
The collected sensor data was then used to retrace the 
driven path in each created map using Adaptive Monte-
Carlo Localization [25, 29]. The resulting trajectories were 
evaluated using the preselected checkpoints. 

The results show that all three of the employed ap-
proaches can be used to generate maps that are suitable for 
the localization and navigation of mobile robots. The TLS-
based approach required the most effort in the mapping 
process but also showed with a deviation of 0.05 cm to 
5.60 cm the highest level of accuracy in the resulting 
maps. The localization inaccuracy ranged from 0.32 cm to 
21.50 cm. The PABC-based approach required the least 
amount of effort and yielded maps with the lowest level of 
detail. Depending on the granularity of the provided build-
ing contours, this approach showed a deviation in building 
contours of 0.60 to up to 130.13 cm and in localization of 
5.30 to 200.98 cm. Lastly, the SLAM-based approach took 
more effort than the PABC-based one but still considera-
bly less than the TLS-based approach while at the same 
time yielding results comparable to the ones created by the 
TLS-based approach. The building contours deviated be-
tween 0.67 cm and 15.54 cm from the ground truth, the 
localization inaccuracy by 0.25 to 13.56 cm. 

Apart from the actual evaluation results, this work has 
yielded three main insights: 1) When selecting the map-
ping approach for a specific robotic application it is worth 
looking beyond the best-known candidates. Other ap-
proaches might be more suitable with respect to available 
hardware or ground conditions in the respective area while 
still yielding sufficiently accurate results. 2) Despite their 
low level of detail, PABC-based maps can be applicable 
for usage in mobile robotics applications and are a low-
cost and low-effort alternative to more established ap-
proaches such as SLAM or TLS. However, it is not suited 
for applications in which a precise localization is required 
or the provided satellite data is highly inaccurate. 3) Quan-
titative measures of map quality do generally correlate to 
a map’s applicability for the localization of mobile robots. 
However, at a certain level of precision the gain in locali-
zation accuracy becomes negligible. 
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