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his work describes three deep learning based 
computer vision approaches, that hold the potential 

to increase the degree of automation and the productivity 
of common warehousing procedures. These approaches 
will focus on: the re-identification of logistical entities, 
especially when entering and leaving the warehouse; the 
multi-view pose estimation of logistical entities to track 
and to localize them on the shop floor; and the category-
agnostic segmentation of items in a bin for robotic 
grasping. 

[Keywords: Deep Learning, Computer Vision, Re-Identification, 
Pose Estimation, Object Segmentation] 

iese Arbeit beschreibt drei Deep-Learning-basierte 
Computer-Vision-Ansätze, die das Potenzial haben, 

den Automatisierungsgrad und die Produktivität 
gängiger Lagerverfahren zu erhöhen. Diese Ansätze 
konzentrieren sich auf: die Re-Identifizierung von 
logistischen Einheiten, insbesondere beim Betreten und 
Verlassen des Lagers; die Multiview-Positionsschätzung 
von logistischen Einheiten, um sie in der Fabrik zu 
verfolgen und zu lokalisieren; und die 
kategorienunabhängige Segmentierung von Artikeln in 
einem Behälter für das Greifen durch einen Roboter. 

[Schlüsselwörter: Deep Learning, Computer Vision, Re-
Identifikation, Pose Estimation, Objekt Segmentierung] 

1 INTRODUCTION 

Sensors and cameras enable a computer-
understandable capture of reality. Their data enables 
evaluations and predictions in order to better understand 
reality. According to [1] the seamless recording and 
visibility of what is currently happening is the basis of the 
fourth industrial revolution and therefore for the 
automation of processes that still involve human operators. 
The ability to design a highly automated warehouse is of 

tremendous interest to the logistics industry [2]. This is the 
case because a high degree of automation could make 
logistics processes more efficient, hence increasing the 
operating margin by reducing either process expenses, 
duration, or both [3]. Improving logistics processes 
requires knowledge of what is happening, e.g., in a 
warehouse, at a given point in time. This knowledge is 
acquired by observation. Nowadays, observation based on 
computer vision is superior to human observation in many 
cases but is not yet widely used. Therefore, this 
contribution presents three ways in which computer vision 
based observation can be applied, providing a greater 
degree of automation for the handling of logistics objects 
around the warehouse, thereby improving warehouse 
performance. 

The first application is the deep learning based re-
identification of individual logistical entities using their 
inherent, visual characteristics. This method entails the use 
of multiple cameras, which record logistical entities, such 
as load carriers, at different points along the supply chain. 
In doing so, images of the recorded entities are stored 
remotely and can later on be fetched when needed, as to re-
identify a previously recorded instance of a specific given 
entity (i.e., in the case of a pallet, not only would it be 
detected but the specific pallet would be identified as the 
unique entity that it is). This can be of great use for 
standardized yet non-serialized logistical entities, such as 
Euro-pallets, that could previously not be uniquely 
identified without relying on artificial features such as 
barcodes [4]. 

The second application is category-agnostic object 
segmentation for robotic grasping [5]. The goal of this 
application is to segment and categorize a variable number 
of yet unseen objects, as would be the case for a real 
warehouse, in which numerous different object types exist. 
Shape, color, and handling properties of these objects may 
remain unknown until the given object reaches the point in 
the supply chain at which it is handled by a robot. The use 
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of category-agnostic object segmentation goes against the 
more common method of segmenting only object types that 
are known beforehand. Such a generalized method would 
be useful for the deployment in differing warehousing 
environments, with the same exact model 

Finally, the third application constitutes a multi-view 
pose estimation approach for localizing logistics objects. In 
logistics facilities, many objects are localized using 
checkpoints which can either result in blind spots during 
material flow operations or constrain the motion of moving 
objects, such as mobile robots, into inflexible layouts. The 
aim of this application is to globally localize objects on the 
shop floor using a system of monocular RGB cameras. 
Doing so could mitigate the aforementioned problems of 
checkpoints and inflexible navigation paths. Recent deep 
learning based approaches for pose estimation [6, 7] 
significantly outperform classical methods, making them a 
preferable choice. Such approaches require large amounts 
of data that is manually annotated. Techniques that enable 
the automated annotation of data are rare and usually 
limited in performance, but provide substantial reduction in 
the preparation time of the entire localization pipeline.    

This contribution presents in detail the above 
mentioned applications of computer vision based 
observation and their potential benefits for the warehousing 
sector. In addition, we will discuss the importance of data 
and problem driven solution development. 

2 STATE OF THE ART IN WAREHOUSING LOGISTICS 
AND COMPUTER VISION 

This section aims at laying out the research that is 
considered relevant by the authors for the approaches 
subsequently presented in this work. The relevant literature 
is divided into logistics processes related research and 
computer vision related research, under which it will be 
further subdivided by each topic 

2.1 RELEVANT WAREHOUSING PROCESSES 

This subsection splits warehousing processes into 
three broad, non-holistic categories, namely the inbound 
and outbound flow of goods and the tracking and handling 
of material. 

2.1.1 INBOUND AND OUTBOUND FLOW OF GOODS 

Material flow is defined as "[…] the interlinking of all 
processes in the extraction, processing and distribution of 
goods within defined areas. Material flow includes all 
forms of the passage of work objects through a system" [8]. 
A system, in this context, is to be understood as a given 
area with an input and an output [9]. In this case, focusing 
on the internal flow of material, this means the reception 
and issuing of goods. 

To ensure a flawless internal flow of materials, certain 
storage and conveying systems as well as corresponding 
loading aids are necessary. Storage systems are used for the 
planned storage of goods, fulfilling several tasks, such as 
quantity balancing [10]. Conveyor systems, on the other 
hand, serve to move goods within the system [10]. To move 
goods efficiently through the various conveyor and storage 
systems, standardized loading aids are used. The most 
commonly used loading aid is the Euro-pallet (dimensions 
of 800 x 1200 mm), to which all elements of the material 
flow system are adapted [10–12]. This also includes, e.g., 
small load carriers, which are standardized according to 
VDA standard 4500 [13]. With a maximum length of 
600 mm and a maximum width of 400 mm, as well as 
smaller sizes corresponding to the respective system 
dimensions, the surface of Euro-pallets can be utilized in 
an efficient manner [13]. 

In addition to the material flow itself, an information 
flow, which is often considered separate in the literature [9, 
10], is also of importance. The information flow includes 
accompanying, subsequent, or preceding information for 
material flow control and regulation as well as 
supplementary data for administrative tasks. Sensors, 
computer-aided processing and further automation already 
play a role here [9]. This also includes the processes 
required to track logistical units. For the unambiguous 
tracking of logistical entities along their lifecycle, such as 
the load carriers already mentioned, reliable identification 
must be ensured. Various global standards exist for this 
purpose, e.g., barcodes or RFID technology [14, 15]. 

An alternative to subsequently applied identification 
features would be the camera-based identification of load 
carriers based on their inherent, visual features (i.e., surface 
structure, color patterns). This would in turn reduce the 
need for manual processes like attaching labels or scanning 
barcodes. In addition, it would thus be possible to 
programmatically unite goods to their respective load 
carriers so that they would remain jointly identifiable. 

2.1.2 MATERIAL HANDLING AND GRASPING 

In pick and place applications, most process steps are 
still performed by hand. Even though deep learning is 
capable of fully automating such tasks, it is still not widely 
adopted. The reason for this limited usage is the separate 
thinking between computer vision research and logistics. 
Research focuses on accuracy while logistics focuses on 
practicality. This separation makes the industry adopt 
older, classical non-learning based approaches over 
learning-based ones even though learning-based 
approaches provide higher degrees of performance. This is 
in part because classical non-learning approaches are easier 
to integrate. Hence, deep learning models should also be 
built with practicality in mind. 

Universal Robots ActiNav, Pickit 3D, Swisslog 
ItemPiQ are examples of software products for robotic 
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grasping and bin picking that use non-learning algorithms 
but are still widely used due to their ease of integration, 
requiring no re-training or tailoring process.  

2.1.3 MATERIAL TRACKING 

Although material tracking approaches target moving 
goods in material flow operations, other logistical entities 
might leverage an existing tracking system in other forms 
(and thus make the advantages of using a tracking system 
twofold). Autonomous Mobile Robots (AMRs) and 
autonomous forklifts are among the logistical entities that 
could not only benefit from a performance enhancement, 
but also receive a solution to persistent problems in their 
operation using a tracking system. For AMRs or 
autonomous forklifts to deliver goods between two points, 
the navigation problem has to be solved repeatedly during 
the operation. The main component in robot navigation is 
localization [16], where the robot has to localize itself, 
along with the goal and any encountered obstacles, in order 
to navigate the environment successfully. However, using 
on-board sensors only to navigate the environment would 
eventually lead to a drift in the location of the robot [17]. 
On the other hand, Automated Guided Vehicles (AGVs) 
can only move through pre-defined paths, which are 
established using markings on the ground or an RFID 
network embedded in the infrastructure. Such approaches 
lead to a closed solution for the navigation problem of 
AGVs, but at the cost of flexibility. In dynamic warehouses 
or automated production facilities where humans work 
closely alongside humans, having fixed navigation paths is 
sub-optimal in terms of the navigation time and 
consequently in the cost of delivering the goods. To 
mitigate the drift problem in AMRs and the navigation 
rigidity issues in AGVs, a global but flexible sensor system 
is needed. Multi-camera systems offer a solution to such 
problems by acting as remote sensors that do not interfere 
with the robot’s motion and thus allow free navigation in 
the process area. By possessing a global view of the shop-
floor, drifts during the navigation of the robots could also 
be corrected by repeatedly updating the robot’s position in 
a global manner. 

Camera systems have been used extensively for the 
purpose of localizing and tracking mobile robots by acting 
as global sensors. The authors of [18] localize a mobile 
robot as well as perceived obstacles using a set of three 
cameras that are viewing the operation area from up top, 
mounted at a distance from one another (wide baseline) for 
coverage and have overlapping fields of view. The 
approach computes a visual hull around the obstacles, 
assuming a cylindrical model to create an occupancy grid 
of the area. A tracking algorithm, that is based on a particle 
filter, then uses the occupancy grid as an appearance model 
to keep track of the robot and the obstacles across the 
frames. Finally, to guarantee the distinction of the robot’s 
identity from obstacles, the robot’s odometry is used for 
validation. In [19], the authors use surveillance cameras 

mounted in narrow hallways to localize robots and 
obstacles. The approach targets the interaction of humans 
and robots in narrow passages, such as those occurring in 
warehouses, that could lead to deadlocks or unsafe traversal 
of humans. The authors resolve the coordination problem 
on a high level by using logical interlocks to provide 
suitable commands for robots in navigating the hallways 
when other robots or humans are detected. Other 
approaches, as in [20], also use multi-camera surveillance 
systems to localize robots in narrow hallways. The images 
from a two-camera system were transformed to bird’s eye-
view images using homography and artificial feature points 
that were added manually to the environment (using a 
checkerboard placard overlaid on the area). A common 
region of interest from both transformed images was then 
extracted. The robot is then segmented out from a binary 
version of the input images after applying a threshold. The 
real location of the robot is then obtained by projecting the 
actual floor image onto the projected plane containing a 
contour that surrounds the robot. The abovementioned 
methods illustrate the underlying capabilities of extending 
a camera-based tracking system into mobile robot 
localization. 

2.2 COMPUTER VISION TASKS IN WAREHOUSING 
LOGISTICS  

This subsection describes the computer vision tasks 
considered to be integral for efficient, modern warehousing 
logistics, namely re-identification, bin picking, and object 
pose estimation. 

2.2.1 IDENTIFICATION 

When using one or multiple cameras to record a 
subject or a set of subjects of interest, data is created that 
can be used in different ways. For one, the data could be 
used to detect movement, in the sense of a frame-to-frame 
anomaly detection, i.e., a change in scenery [21, 22]. 
Beyond the detection of movement, the presence of a 
certain set of subjects could be detected, as in class-based 
object detection [23]. A similar approach would be the 
simple classification of recorded images into predefined 
classes or clusters. Finally, for instances in which not only 
the detection or classification of a certain subject is of 
interest, but an intraclass distinction is to be made, 
identification comes into play [24]. Defined as the process 
of identifying previously recorded subjects over a network 
of cameras [24], identification is used in the area of 
pedestrian or vehicle surveillance. It also holds other uses, 
such as animal identification or, in this very case, the 
identification of logistical entities. 

In order to identify objects, distinct methods can be 
employed. A common and straightforward one would be 
the use of 2D or 3D codes. These could be linear codes, 
such as barcodes, or two-dimensional codes, such as 
DataMatrix codes or QR codes [15]. Their advantage is the 
standardized and well-established way in which they can 
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be used. In this sense, they offer a low entry barrier, both 
in terms of development and in terms of costs and 
complexity. On the other hand however, their functionality 
is reliant on their legibility, which hinges on the material 
that they are applied to and in turn on the amount of wear 
and tear that it is exposed to during its life cycle. 

Furthermore, sensors and transmitters could be used, 
presenting a more complex, cost-intense but durable and 
reliable alternative to codes [25]. The pairing of an RFID 
sensor and transmitter would be one such option. [15, 25] 

Finally, the surface structure of a subject of interest 
could be used as its identifying feature. This approach 
could be used at a high level of detail and granularity, as 
proposed in methods such as FIBAR [26] or PaperSpeckle 
[27], in which the microscope-level surface structure of a 
subject would be analyzed. At this level, all objects on earth 
that would come to mind should be unique and thus allow 
for them to be distinguished from one another. However, 
the use of such methods necessitates special sensor 
equipment, a laboratory environment, and a dedicated 
recording setup. 

Given these limitations, the exploitation of surface 
structures detectable by means of ordinary vision systems, 
such as a camera, would be advantageous, as long as the 
aim is the deployment in an industry environment. 
Therefore, subjects that hold certain visually detectable 
idiosyncrasies are suited for this type of identification. This 
could be humans and their inherent visual features, their 
gait, etc., or objects that are made out of materials that have 
a unique surface structure, i.e., wood [28–31]. These visual 
features however, would have to be extracted from the 
image dataset, which could be done by means of deep 
learning techniques. The advantage of such an approach 
would be the use of widely used sensors and the low setup 
cost and complexity. On the other hand, deep learning 
techniques are often considered to be black boxes and can 
therefore be experimental in nature and need a great 
amount of data and expertise to be deployed correctly and 
proficiently. 

2.2.2 OBJECT SEGMENTATION FOR GRASPING TASKS 

A former trend in the deep learning community was to 
build end-to-end deep learning models. While many 
researchers, such as [32] showed that it is possible to teach 
a model a very specific task from end to end, these models 
are not practical to use. They have to be trained using an 
in-house collected dataset for that very specific task and the 
very specific environment. They can also not be used for 
any other similar task. 

That end-to-end trend evolved into rather divided 
problems where object detection and object grasping are 
two different modules. While this helped to integrate deep 
learning in the industry it still misses an important aspect, 
which is that deep learning models produced by researchers 

are not directly useful for industry usage. They have to go 
through a time-consuming tailoring process for each 
application, for each setup. 

The current trend in deep learning is to divide the 
problems into even smaller modules. An example of such 
a problem is the unseen object segmentation problem, i.e.,  
[33–36]. Instead of of the regular object segmentation of 
having a closed set of objects or goods that the deep 
learning model can segmented, unseen object segmentation 
focuses on building deep learning models that can segment 
any type of number of objects without classifying those 
objects. 

While this work is going in the modularized direction 
it is still not clear how much of the work each module 
should do. In addition, only the visual information is used, 
neglecting other sources of information in the practical 
world. As discussed later, we propose a pipeline for the 
modularization and discuss how different information 
sources would help in the practical world. 

2.2.3 OBJECT POSE ESTIMATION 

In order to estimate the pose of objects in an indoor 
environment, multiple methods have been proposed in 
recent literature [6, 37–39]. One prominent approach is 
cosypose [6], where the authors rely on monocular images 
from multiple image streams to estimate the poses of 
objects within a scene. The approach initially detects 
regions where objects of interest are present, then uses the 
collected detections to estimate the pose from individual 
images. The poses from the camera streams are then 
aggregated with a joint bundle adjustment algorithm to 
produce a more accurate pose for the objects present. Other 
approaches such as [39] treat the pose estimation task as a 
classification problem. The approach relies on finding 
corresponding keypoints between multiple RGB image 
streams which are then paired with a 3D model of the 
object. Individual pose predictions are then obtained from 
each pairing. The generated pairings are then assimilated 
by a neural network which generates the final pose 
parameters.  

The discussed approaches rely on large annotated 
datasets to achieve the pose estimation task. Such data is 
usually manually annotated in a tedious manner. The T-
LESS dataset [40], for example, has been collected and 
annotated using a special setup comprised of an RGBD 
camera, a monocular RGB camera, and a turntable that 
moves the objects at predefined intervals. The objects were 
matched to their 3D model counterparts by manual 
alignment. Moreover, datasets that target the logistics 
domain are scarce. Being one of the few datasets in the 
logistics domain, the LOCO dataset [41] captures objects 
in realistic industrial scenarios and comprises objects that 
are commonly involved in material flow operations such as 
pallets and forklifts. The dataset contains 152,421 2D 
bounding box annotations that were manually added. 
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3 METHODOLOGICAL CONSIDERATIONS 

This section describes the methods used to put the 
approaches detailed in section 2.2 into practice. In doing 
so, the used software as well as the experimental setups will 
be described. 

3.1 RE-IDENTIFICATION METHODS 

As discussed in Section II, different identification 
methods exist. The authors assume that the use of computer 
vision based deep learning methods allow for the reliable 
deployment of identification methods in the industry. As 
established, this is due to the adaptability of deep learning 
methods and the increasing ease with which large amounts 
of data can be gathered. Therefore, we propose the use of 
deep learning based re-identification methods for the 
purpose of re-identifying logistical entities. In this context, 
we have so far focused on the application of these methods 
on Euro-pallets and their chipwood pallet blocks. Due to 
the unique pattern obtained during the creation of these 
pallet blocks, they are well suited for the use as 
idiosyncratic features or fingerprints of their respective 
pallet. 

For this specific task, our approach (as can be seen in 
Fig. 1) is the following: First, a pallet on a conveyor belt 
would pass by a set of two cameras, positioned at a 90° 
angle in relation to the conveyor belt. These cameras would 
provide an object detection model, trained on pallet blocks, 
with a continuous video stream. In this case, a YOLO based 
solution is employed, which detects pallet blocks, saves the 
frame in which the detection takes place and the pallet 
block is entirely in the field of view, and then crops these 
images to the predicted bounding boxes. Subsequently, 
these images are processed by a re-identification model, 

which works as a feature extractor. In this sense, the pallet 
block images are processed into a vectorized form, that 
contains the features of the respective image, that the model 
considers to be the defining attributes of the image. These 
vectors are then stored in a data frame, in which they can 
ultimately be compared to one another in terms of their 
similarity. Thus, the vectors that are considered to be the 
least dissimilar are matched and predicted to be images of 
the same pallet block, assuming that another image of the 
same pallet block already exists. In this context, the image 
that would be compared to the remaining images would be 
taken from a query set, while the remaining images would 
be taken from a gallery set. These sets can differ in their 
size and distribution. For the time being, the re-
identification process is conducted under the assumption of 
a closed set. That is, when matching a query image with the 
gallery, it is assumed, that a correct match ought to be 
found. This means, that no novelty detection takes place at 
this point in time. The results of the re-identification 
process are evaluated through ranked accuracy and F-
Scores, conforming to standard literature in state-of-the-art 
research. 
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Fig. 1: The proposed pallet re-identification workflow 
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3.2 OBJECT SEGMENTATION METHODS 

 

Fig. 2: The proposed pipeline for the object segmentation 
and classification task. 

Computer vision problems can benefit from taking the 
logistical perspective into consideration. Object 
segmentation is one such problem, rethinking how the 
architecture of deep learning models can be modified as to 
improve two points. The first point is considering a priori 
information from other sources and the second one is the 
network design for practical deployment. 

First, the most common case for object segmentation 
is to only use images for the segmentation and neglecting 
other sources of information. Warehousing databases are a 
source of such a priori information. Typically, such 
databases contain the precise number of objects and their 
types. An object segmentation pipeline can use such 
information to compare against the output of the model 
segmentation with the database and make a correction step. 
Therefore, if the number of the segmented masks does not 
match the number of objects in the database then a join and 
split method should be used to correct the segmentation 
such as the method proposed in [42] 

The second point is to split the object segmentation 
into two steps (segmentation and classification). This can 
be achieved using the object types stored in the database. 
This modularization would help deep learning models to be 
directly exported from research to application with little to 
no effort. The segmentation network should be a model for 
unseen object segmentation. The classification model 
compares the segmented masks to a pre-stored image of an 
object in the warehouse database. 

The reason for which a model for unseen object 
segmentation is needed is that a model that is trained for 
unseen object segmentation on different environments 
could be deployed to the industry nearly instantaneously 

but a model that is trained on a specific dataset of objects 
could only segment this set of objects and would require 
fine-tuning before deployment. Similarly deep learning 
models for unseen object classification could match those 
unclassified object masks to pre-captured images of the 
target object. 

Fig. 2 shows the building blocks for the proposed 
segmentation pipeline. The pipeline keeps the two concepts 
in mind, first integrating the a priori knowledge to reduce 
deployment effort and take advantage of other information 
sources that can be used to improve the segmentation and 
verify its output and second to split the segmentation 
process into smaller modules so that models trained in 
research could be used in real world scenarios. 

3.3 OBJECT POSE ESTIMATION METHODS 

Deep learning techniques have recently shown 
significant performance improvement over classical 
methods, particularly in vision based applications. 
However, as discussed previously, the performance of deep 
learning techniques is heavily reliant on the existence, 
amount, and quality of the data used. Deep learning 
approaches often require large amounts of data that are 
manually annotated in a laborious manner. In this work, we 
automatically annotate data captured in large industrial 
settings using an RGB monocular camera system combined 
with a motion capturing system for the purpose of object 
pose estimation. Our method was used to collect and 
annotate a sample dataset.  

Our automated annotation pipeline requires two 
sources of information, namely an RGB camera system for 
collecting images and 6-dimensional positions of the 
objects of interest such as those provided by a motion 
capturing system. At our research facility, a large motion 
capturing system, comprised of 48 cameras, covers a shop-
floor-like area. The area is commonly perceived by an 8-
RGB camera system. Our experimentation area is shown in 
Fig. 3. 
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Fig. 3: Camera system installed at our research facility. 
Locations for seven of the eight installed cameras are circled in 
red.  

Our approach to automated annotation is comprised of 
three main phases: camera calibration and localization, 
calculation of relative poses, and post-processing. Initially, 
each RGB camera is calibrated to obtain the intrinsic 
parameters. The cameras are then localized within the 
world frame of the motion capturing system which acts as 
a common frame for both systems. Since the object pose 
estimation task is concerned with the relative pose of the 
object with respect to the camera, the relative poses are 
calculated using a linear transformation chain. Finally, in 
the post processing phase, the annotation of the RGB 
images is generated by projecting the 3D models of the 
objects of interest onto the images using their ground truth 
poses obtained by the motion capturing system. We discuss 
the details of the three phases next.  

First, individual RGB cameras are calibrated using the 
methods described in [43], using a checkerboard pattern. A 
range of 35 to 60 pattern images were taken per camera that 
vary heavily in terms of the distance to the camera. The 
resulting intrinsic parameters per camera are then stored. A 
modified version of the checkerboard pattern that is tracked 
by the motion capturing system is then used to localize the 
cameras. The tracking is done by attaching retro-reflective 
markers to the checkerboard pattern. The localization can 
then be performed by extrapolating the 3D points existing 
on the checkerboard grid in each of the captured frames. 
Since the 3D points are measured with respect to the 
motion capturing system’s world frame, and since the 2D 
corresponding pixel locations are available from the 
intrinsic camera calibration step, the location of the camera 
in the world frame of the motion capturing system could be 
obtained by passing the sets of 3D and 2D points to the 
solvePnP algorithm [44]. 

Second, the obtained camera locations and their 
intrinsic parameters could be used to calculate the poses of 
the objects of interest with respect to the cameras, i.e, 
perform object pose estimation. Given the locations of the 

object as well as the cameras, in the global frame of the 
motion capturing system, the relative location of the object 
with respect to each of the cameras can be calculated using 
a linear transformation chain that links the motion 
capturing system, the objects of interest, and the camera 
under investigation. The linear transformation chain can be 
represented by the following equation: 

     𝐻𝐻𝑜𝑜𝑜𝑜𝑜𝑜𝑐𝑐𝑐𝑐𝑐𝑐 =  (𝐻𝐻𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 )−1 𝐻𝐻𝑜𝑜𝑜𝑜𝑜𝑜𝑐𝑐𝑐𝑐    (1) 

where 𝐻𝐻(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑐𝑐𝑑𝑑𝑑𝑑𝑜𝑜𝑑𝑑)
(𝑑𝑑𝑜𝑜𝑠𝑠𝑠𝑠𝑐𝑐𝑑𝑑)  represents the homogeneous 

transformation from a source frame to a destination frame. 
𝑐𝑐𝑐𝑐𝑐𝑐, 𝑜𝑜𝑜𝑜𝑜𝑜, 𝑐𝑐𝑎𝑎𝑎𝑎 𝑐𝑐𝑐𝑐 represent the camera, object, and 
motion capturing system frames, respectively. For 
example, 𝐻𝐻𝑜𝑜𝑜𝑜𝑜𝑜𝑐𝑐𝑐𝑐𝑐𝑐 describes how the object frame is situated 
within the camera frame. 

Finally, in the post-processing step, the annotations of 
the images are automatically generated. The annotations 
include image masks and 2D bounding boxes for objects of 
interest. Image masks are produced by rendering the pre-
designed 3D models of the objects of interest at their 
relative poses with respect to the camera. The rendered 
models are then projected from the 3D space onto the 
image using the camera intrinsic parameters that were 
previously stored. The 3D points are projected to their pixel 
locations using the camera projection matrix [45] described 
by the following equations: 

𝑥𝑥 = 𝑃𝑃 𝑋𝑋   (2) 

where 𝑋𝑋 is a 4 x 1 vector of a point location in 3D space, 𝑥𝑥 
is a 3 x 1 vector of pixel locations, and 𝑃𝑃 is the projection 
matrix defined as: 

𝑃𝑃 = 𝐾𝐾 [𝑅𝑅 | 𝑡𝑡] = 𝐾𝐾 𝑅𝑅 [𝐼𝐼 | 𝑅𝑅𝑇𝑇  𝑡𝑡]  (3) 

where 𝐾𝐾 is the 3 x 3 camera matrix describing the 
intrinsic parameters of the camera. 𝑅𝑅 and 𝑡𝑡 are the 3 x 3 
rotation matrix and 3 x 1 translation vector of the ground 
truth pose of the object, respectively. A 2D bounding box 
is then fitted around the generated masks to produce the 
final annotations in a fully automated manner. 

4 RESULTS AND ADVANCES 

This section will present the current results and 
advances of the methods presented in the preceding 
section. 

4.1 RE-IDENTIFICATION ADVANCES 

So far, two datasets have been created that represent 
substantial first steps towards putting the re-identification 
of logistical entities into practice (see Fig. 4). The first 
dataset, pallet-block-502 [46], contains 5,002 images of 
pristine pallet blocks, provided by EPAL. 10 images per 



DOI: 10.2195/lj_proc_rutinowski_en_202211_01  
URN: urn:nbn:de:0009-14-56018 

  
© 2022 Logistics Journal: Proceedings – ISSN 2192-9084              Page 8 
Article is protected by German copyright law 

pallet block were taken in five predetermined perspectives 
and with two different lighting conditions. 

  

Fig. 4: Example images from both datasets a) ID 28 of pallet-
block-502 and b) ID 3047 of pallet-block-32965.  

The limitations of this dataset are its use of pristine 
pallet blocks and its limited size. Subsequently, a new 
dataset, pallet-block-32965 [47], was recorded in the 
warehouses of two major German companies. Here, 
131,860 images were recorded over a span of multiple 
months. Two cameras were pointed at conveyor belts at 
each site. One camera was facing the conveyor belt at a 90° 
angle, while the other one was positioned at an angle of 
120°. This second angle was chosen to have a visually 
different perspective of the pallet which could still be a 
realistic recording angle in some industrial scenarios. Per 
camera (2.4 MP resolution), two images were taken of each 
recorded pallet block, a couple of frames apart. The camera 
software parameters were constantly changing (exposure, 
gain, and level control) and the lighting conditions were 
changing in function of the lighting in the warehouses. A 
rendered representation of the laboratory recording setup 
can be seen in Fig. 5. 

 

Fig. 5.: Rendering of the demonstrator used for the re-
identification workflow (curtesy of Fraunhofer IML).  

These two datasets have so far been used for data-
driven re-identification approaches. This means, that they 
were used to train deep learning models, meant to 
subsequently re-identify pallet blocks. So far, using the 
abovementioned datasets, rank-1-accuracy scores upwards 
of 90% could be gathered. These scores were obtained 
using YOLO based object detection, the PyTorch 
framework TorchReID, and a residual convolutional neural 
network (PCB_P4 with a ResNet50 backbone). The 
experiments conducted so far did not include novelty 
detection but indicate that a reliable re-identification of 
closed sets of chipwood pallets is feasible. 

4.2 OBJECT SEGMENTATION ADVANCES 

 

Fig. 6: Unseen objects segmented by our trained model. 

Fig. 6 shows a segmentation obtained from our trained 
model for unseen object segmentation. The model uses a 
Mask R-CNN model implemented in the Detectron2 
framework trained on a synthetic dataset and a real dataset 
collected by the authors. This segmentation represents the 
first step of the proposed processing pipeline. The second 
step in the process would be the classification of the object 
against all the objects listed in a pre-captured database of 
object images. As mentioned in the pipeline the database 
can be used to validate the output of the segmentation. This 
method would allow the same trained network as the one 
shown here to be used with any type of objects for bin 
picking or robotic grasping, eliminating any effort for re-
training or fine-tuning. 

4.3 OBJECT POSE ESTIMATION ADVANCES 

The discussed automated annotation procedure was 
used to annotate a dataset collected at our research facility. 
The dataset is comprised of five object categories including 
pallets, cardboard boxes, movable workstations, mobile 
robots, and small load carriers. A total of nine instances for 
the objects were captured by all eight RGB cameras and 
automatically annotated. A sample overlaid projection of 
the 3D models for objects of interest in a sample scene is 
shown in Fig. 7. The grey silhouettes in the figure could be 
fitted to generate bounding box annotations. Methods 
mentioned in section 2.2.3 could then be used to estimate 
the poses of objects of interest. 
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Fig. 7:  Overlaid projection of three objects of interest (light 
grey) onto a single scene image from one camera. 

5 OUTLOOK AND IMPACT REVIEW 

In this contribution, we demonstrated the way in which 
three distinct deep learning based computer vision methods 
could be applied to warehousing logistics. These methods, 
once deployed, would permit the identification of specific 
logistical entities when entering and leaving the warehouse, 
could track them around the warehouse and give an 
estimate on their pose, and could finally handle and grasp 
before unseen entities, in a reliable manner. The 
preliminary results obtained during our research indicate, 
that these methods would pose a benefit to common 
warehousing environments, in which they could be 
deployed at a later point in time. 

Given the approaches that are presented in this work 
and the results obtained thus far, we believe, that further 
development of these methods would be advantageous for 
the warehousing community. The reliability of such 
methods is of utmost importance in the industry and as 
such, more testing and validation has to be performed first. 
For re-identification, reliable exception handling processes 
have to be established, potentially involving human 
operators. This would be important, as to not wrongfully 
label, e.g., an outbound load unit. For object pose 
estimation, expanding our approach to other indoor scenes 
could increase the generalization capability and thus help 
avoid fingerprinting and overfitting on the current setup. In 
addition, tracking not only the materials transferred, but 
also human operators, would add new insights and 
understanding in terms of monitoring the processes. For 
object segmentation we showed how unseen object 
segmentation models can eliminate the need for fine-tuning 
of deep learning models. The pipeline requires other 
modules for unseen object classification and segmentation 
correction to be built. Having such modules would allow 
for the wide use of the exact same models in different 
warehouses and production facilities. 
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