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o ensure safe operation of mobile robots in public
spaces, the robots must be able to detect obstacles

and identify non-traversable ground. However, there are 
relatively few suitable methods for mobile robots in urban 
environments available and equally few empirical data on 
such applications. This contribution identifies require-
ments for such systems, designs meaningful test scenarios, 
and evaluates an exemplary approach using a mobile ro-
bot platform with depth sensors. It is found that the 
method is suitable in principle, but that different roadway 
elements pose a challenge to detection. Corrupted sensor 
data due to tilting movements or overexposure also nega-
tively affect the quality of obstacle detection. 

[Keywords: mobile robot, obstacle detection, public space, tra-
versability, urban test scenarios] 

m einen sicheren Betrieb von mobilen Robotern im 
öffentlichen Raum zu gewährleisten, müssen Robo-

ter in der Lage sein, Hindernisse zu erkennen und unbe-
fahrbare Bodenbereiche zu identifizieren. Es existieren 
jedoch nur vergleichsweise wenige geeignete Methoden 
für mobile Roboter in städtischen Umgebungen und 
ebenso wenig empirische Daten bezüglich solcher Anwen-
dungen. In diesem Beitrag werden Anforderungen an sol-
che Systeme identifiziert, aussagekräftige Testszenarien 
entworfen und ein beispielhafter Ansatz anhand eines 
mobilen Roboters mit Tiefensensoren evaluiert. Es wird 
festgestellt, dass diese Methode prinzipiell geeignet ist, je-
doch verschiedene Fahrbahnelemente eine Herausforde-
rung für die Erkennung darstellen. Fehlerhafte Sensor-
daten durch Kippbewegungen oder Überbelichtungen 
beeinträchtigen ebenfalls die Qualität der Hinderniser-
kennung. 

[Schlüsselwörter: mobile Roboter, Hinderniserkennung, öffent-
licher Raum, Befahrbarkeit, urbane Testszenarien] 

1 INTRODUCTION 

The detection of obstacles and thus impassable areas 
plays a key role in the development of perception systems 
for mobile robots. However, the specific requirements for 
such systems vary between different applications. Applica-
tions with predominantly flat floor surfaces, such as ware-
houses, allow relatively straightforward detection of obsta-
cles and recognition of traversable areas. Obstacles are 
distinguished by the fact that they protrude from the flat 
surface of the floor. Mobile robots operating outdoors in 
public spaces often have to navigate uneven or sloped sur-
faces such as paved areas, gravel paths, and ramps. The un-
even ground surface itself as well as the resulting relative 
motions between the robot and the ground plane render 
segmentation based on height thresholds difficult. In addi-
tion, certain parts of the ground itself might pose an obsta-
cle if the surface is too uneven or too steeply inclined for a 
robot to travel on. Determining the traversability of ground 
surfaces in the robot’s vicinity is essential to planning suit-
able driving trajectories. Urban environments present a par-
ticular challenge, as false detections can lead not only to 
damage or loss of the robot, but also to serious injury for 
affected individuals. 

While obstacle detection and drivable area segmenta-
tion are common problems in the field of automated driving 
[1, 2], comparatively few solutions focus on compact mo-
bile robots. Similarly, there are only few research studies 
and empirical data that address and evaluate the challenges 
of robotic applications in public spaces [3]. 

The objective of this work is to investigate which suit-
able approaches are available for the detection of obstacles 
in public spaces and which performance can be expected 
from these methods in practical real-world scenarios. For 
this purpose, a selected, open source available method is 
integrated into a delivery robot prototype from the current 
research project TaBuLa-LOG [4]. This robot is equipped 
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with four downward-facing stereo cameras on all sides to 
capture the ground surface in its immediate vicinity as 3D 
point clouds. Its control system is based on ROS (Robot 
Operating System), which enables straightforward integra-
tion of additional features. The entire system is then evalu-
ated in various scenarios that replicate real-world chal-
lenges for such systems and address previously identified 
requirements. Those scenarios also include a combined lo-
gistics use case in which the mobile robot enters and exits 
an automated public transport (PT) shuttle via a ramp. This 
shuttle was also part of the TaBuLa-LOG project. 

The main contributions are: 

• Identification and definition of requirements for
obstacle detection systems for mobile robots in
public spaces or urban environments (Section 4).

• Derivation and development of meaningful, real-
world test scenarios for such detection systems
(Section 5).

• Trial and evaluation of a selected recognition/seg-
mentation algorithm using empirical data from a
mobile robot prototype with depth sensors in real-
world test scenarios (Sections 6 and 7).

A short overview of relevant literature can be found in 
Section 2, with a focus on object detection approaches that 
are provided as open source software. 

2 RELATED WORK 

Perception and interpretation of a vehicle’s environ-
ment are some of the basic prerequisites for the safe opera-
tion of autonomous vehicles, especially in public traffic ar-
eas [5]. This creates a correspondingly broad field of 
research. Beyond ground-based applications, analogous 
systems are also being used in unmanned aerial and water 
vehicles [6, 7]. In this paper, the focus is on ground-based 
mobile robots. 

2.1 OBSTACLE DETECTION FOR MOBILE ROBOTS 

The existing literature on obstacle detection for mobile 
robots covers a wide variety of topics and approaches. This 
includes detecting obstacles in the sense of non-traversable 
areas. Published methods typically differ in the following 
characteristics: 

• Task: object detection, segmentation

• Sensor type: LiDAR, RGB-D (e. g. time of flight;
stereo camera), RGB (i. e. monocular camera),
combination of sensors

• Operational environment: indoor, outdoor (urban,
off-road)

• Employed method: geometric reasoning, machine
learning/neural networks

The following publications were selected as repre-
sentative examples. 

Hua et al. [8] present a system for avoidance of small 
obstacles using RGB-D sensors and an encoder-decoder 
network based semantic segmentation. It is evaluated 
against indoor and outdoor data, including the Citiscapes 
dataset [9]. Using not a robot in the classical sense but an 
electric wheelchair Wang et al. [10] propose a self-super-
vised approach for deep learning-based drivable area seg-
mentation. This also addresses the issue of limited datasets 
and training data. For recording data and evaluation, an 
RGB-D sensor is used. Pang et al. [11] present a method to 
detect obstacles in urban environments using a 2D LiDAR 
that is facing downwards. The method is evaluated using 
three scenes: a normal road, a school gate and a curved, 
sloped road segment with parked cars. 

To the best of our knowledge there is no systematic 
evaluation of an obstacle detection method for mobile ro-
bots in a variety of urban scenarios. With the SideGuide 
dataset [12], however, there is a large dataset with RGB 
stereo images of sidewalks and various characteristic ob-
jects. 

2.2 ROS-COMPATIBLE OPEN SOURCE 
IMPLEMENTATIONS 

In the context of this work, approaches that are avail-
able as open source implementations are of particular inter-
est, as one of them will later be selected for practical eval-
uation on a robot prototype vehicle. Consideration is given 
to approaches that are already distributed as ROS packages 
as well as those that could be integrated into a ROS-based 
system. 

One potential approach is the segmentation of a point 
cloud into traversable ground planes and obstacles. A ROS 
node that accomplishes this task is the obstacles_detection 
node developed by Labbé and Michaud [13] as part of the 
RTAB-Map ROS package. The segmentation of the input 
point cloud is based on the orientation of their surface nor-
mal vectors, a method already addressed in some of the ear-
liest approaches to obstacle detection [14]. The output of 
the system consists of two point clouds, one containing tra-
versable points and the other containing points classified as 
obstacles. 

The RTAB-Map node uses functions of the Point 
Cloud Library (PCL) [15], which provides a multitude of 
functions for point cloud processing. The available PCL 
ROS package allows the use of various point cloud pro-
cessing functions, such as filtering measurements based on 
their surface normal vectors. Accordingly, the PCL would 
provide the means to develop an independent approach to 
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obstacle detection instead of relying on existing ready-to-
use solutions.  

A Python repository that could be integrated into a 
ROS-based system is GndNet [16] and implements point 
cloud ground-level segmentation. The approach is similar 
to RTAB-Map in terms of the overall goal, but the segmen-
tation of traversable planes and obstacles is based on a neu-
ral network and is optimized for LiDAR data. 

Besides segmenting point clouds into ground and ob-
stacles, another approach employs the projection of the 
point cloud into an elevation map. Elevation maps display 
the environment in form of a grid map where each grid cell 
is assigned a corresponding height. Based on this represen-
tation, impassable areas can be determined by calculating 
the slopes between neighboring cells. As the integration of 
obstacle detection into the navigation of a robot requires a 
real-time application, dynamic robot-centric elevation 
maps are particularly suitable. These record the robot’s en-
vironment in a predefined radius and are updated periodi-
cally. ROS packages for robot-centric and real-time eleva-
tion mapping approaches are ANYbotics 
elevation_mapping [17] and hector_elevation_mapping 
[18].  

Another approach worth mentioning is the Move Base 
Flex navigation stack developed by [19] as an alternative 
to the ROS standard navigation stack. Move Base Flex en-
ables navigation based on 3D data as opposed to a two-di-
mensional cost map structure used in the standard naviga-
tion stack. As part of this project, a package called 
mesh_navigation was developed that enables navigation 
using elevation maps [20]. 

3 METHOD 

In this section, the methodological approach of this 
work is explained in detail. The integration and evaluation 
of an obstacle detection system for mobile robots is there-
fore divided in requirements analysis, the development and 
recording of test scenarios, the selection, parameterization 
and application of an obstacle detection approach as well 
as the evaluation of the system’s performance. 

3.1 REQUIREMENTS ANALYSIS 

The requirements analysis describes the definition of 
requirements to be met by a system for obstacle detection 
in the close range of a mobile robot operating in public 
spaces. The focus here is on four different influencing fac-
tors: (1) Requirements of the existing system, (2) general 
characteristics of obstacles to be detected, (3) environmen-
tal conditions, and (4) the robot application. The system-
specific requirements include the software and hardware 
specification of the robot, to allow the selection of a com-
patible approach. The general characteristics of obstacles 
to be detected define geometric dimensions of objects that 

would be considered obstacles. Requirements resulting 
from the environmental characteristics of the robot are 
partly oriented on the city of Lauenburg/Elbe, which repre-
sents the operating area of the mobile robot within the TaB-
uLa-LOG project. The application-specific requirements 
result from the use case of a mobile robot operating in pub-
lic areas in combination with public transport vehicles. 

3.2 DEVELOPING AND RECORDING TEST SCENARIOS 

Based on the requirements derived in the first step, the 
development of test scenarios follows. To be able to evalu-
ate a given obstacle detection approach, a set of real-world 
test scenarios are developed that cover all analyzed require-
ments. During this process, the focus remains on universal 
applicability to enable the evaluation of further approaches 
in subsequent work. To be able to apply an obstacle detec-
tion approach to the test scenarios offline, they are recorded 
as ROS bag files, further ensuring exact reproducibility of 
the experiments. 

3.3 SELECTING, PARAMETERIZING AND APPLYING THE 
OBSTACLE DETECTION APPROACH 

After recording the test scenarios, an algorithm is se-
lected that most promisingly fulfills the identified require-
ments. It is particularly relevant whether the investigated 
approach fulfills the system-specific requirements in terms 
of hardware and software compatibility and whether gen-
eral obstacle detection can be realized in the sense of the 
task. The selected obstacle detection algorithm is then pa-
rameterized and applied to the test scenarios offline. The 
parameterization is performed with the help of a separate 
scenario that is independent of the test cases. Based on the 
general obstacle properties, different geometric shapes are 
3D-printed, which are to be classified by the algorithm as 
obstacles or as passable, and the parameters are adjusted 
accordingly. The application of the algorithm to the test 
scenarios takes place in an offline testing environment, 
which is set up on a computer that matches the one installed 
on the robot. This enables an offline application of the al-
gorithm to the recorded test scenarios. 

3.4 EVALUATING THE SYSTEM’S PERFORMANCE 

To ensure universal applicability and comparability, 
universal metrics for the evaluation of the test scenarios 
through success and failure indicators are identified. The 
detection rate is used as a metric for evaluating detection 
performance. This describes the percentage of detected ob-
stacles by dividing the number of detected obstacles 
𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑑𝑑  by the total number of obstacles present 
in each scenario 𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜. 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑛𝑛 𝑅𝑅𝑅𝑅𝐷𝐷𝐷𝐷 =  
𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑑𝑑

𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
[%] 

A metric to ensure evaluation of the system in terms 
of error susceptibility is the mean absolute error (MAE) of 
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the system. In the context of obstacle detection, errors oc-
cur when an obstacle is not detected as such or, on the con-
trary, an obstacle is detected although there is none. These 
cases are called false negative and false positive classifica-
tions. Accordingly, the MAE results from the sum of false 
negative classifications 𝑛𝑛𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑛𝑛𝑜𝑜𝑛𝑛𝑜𝑜𝑜𝑜𝑛𝑛𝑛𝑛𝑜𝑜  and false positive 
classifications 𝑛𝑛𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑝𝑝𝑜𝑜𝑜𝑜𝑛𝑛𝑜𝑜𝑛𝑛𝑛𝑛𝑜𝑜, which are normalized regard-
ing the total number of evaluation steps 𝑛𝑛𝑓𝑓𝑓𝑓𝑜𝑜𝑓𝑓𝑜𝑜𝑜𝑜 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜. The 
MAE thus reflects the average number of misclassifica-
tions per evaluation step, where each sequential evaluation 
step analyzes the images of all four cameras at once. Ac-
cordingly, the total number of evaluation steps results from 
the scenario duration and the frame rate of the cameras. 

MAE =  
𝑛𝑛𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑝𝑝𝑜𝑜𝑜𝑜𝑛𝑛𝑜𝑜𝑛𝑛𝑛𝑛𝑜𝑜 + 𝑛𝑛𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑛𝑛𝑜𝑜𝑛𝑛𝑜𝑜𝑜𝑜𝑛𝑛𝑛𝑛𝑜𝑜

𝑛𝑛𝑓𝑓𝑓𝑓𝑜𝑜𝑓𝑓𝑜𝑜𝑜𝑜 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

For each evaluation step, the number of obstacles to be 
detected, the number of fully detected obstacles, the num-
ber of partially detected obstacles, the number of unde-
tected obstacles (false negatives), and the number of falsely 
detected obstacles (false positives) are thus collected to cal-
culate the metrics.  

Finally, the system is evaluated based on the results 
from each test scenario. The key performance indicators 
(MAE and detection rate) are used to evaluate the system’s 
performance and to identify potentials and challenges that 
need to be overcome. 

4 REQUIREMENTS FOR AN OBSTACLE DETECTION 
SYSTEM FOR MOBILE ROBOTS IN PUBLIC SPACES 

To guarantee a systematic evaluation, requirements for 
the detection of obstacles in the close range of a mobile ro-
bot in public space are derived regarding (1) system-spe-
cific requirements, (2) general obstacle properties, and (3) 
environmental conditions as well as (4) the specific appli-
cation. These requirements serve as the basis for selecting 
an obstacle detection approach as well as developing sce-
narios for evaluating its performance. 

4.1 SYSTEM-SPECIFIC REQUIREMENTS 

The system-specific requirements serve to ensure the 
compatibility of the approach being evaluated with existing 
robots in terms of both software and hardware. For an ob-
stacle detection approach to be selected, compatibility with 
ROS Melodic and a release under an open source license 
have to be fulfilled. The stereo cameras of the mobile robot 
produce 3D point clouds, which serve as input data for a 
selected algorithm. Additionally, the approach should be 
executable on a mobile computing unit with limited com-
puting power. 

4.2 GENERAL OBSTACLE PROPERTIES 

The obstacle properties can also be derived from the 
TaBuLa-LOG mobile robot and may vary for different ap-
plications. Experiments in the context of approval proce-
dures have shown that obstacles with a size of 5 cm as well 
as surfaces with a slope of significantly more than 30 % can 
lead to safety-critical problems and should therefore be de-
tected. Since in this case a more detailed classification of 
detected objects is not necessary, the task of obstacle de-
tection can be reduced to a binary decision between passa-
ble areas and obstacles respectively impassable areas. 

4.3 ENVIRONMENT-SPECIFIC REQUIREMENTS 

Mobile robots in public areas must be able to operate 
in a variable and changing environment, which itself has its 
requirements for an obstacle detection system. The surface 
to be driven on varies from unpaved gravel paths to level 
and structured walkways to uneven cobblestones. Espe-
cially irregular and uneven surfaces cause the robot and its 
sensors to sway. This creates challenges regarding the de-
tection of passable areas since parts of the ground are per-
ceived as obstacles due to the changing orientation of the 
sensor system. Accordingly, the obstacle detection system 
should be able to robustly segment traversable ground from 
obstacles as independently as possible from changing 
ground structures. Operating on walkways demands to de-
tect dynamic obstacles, such as pedestrians, in real-time as 
well as the boundary of the walkway which is usually the 
drop off of the curb to the street. 

4.4 APPLICATION-SPECIFIC REQUIREMENTS 

The fourth and last influence on the requirements is 
represented by the given application of the robot. In the 
TaBuLa-LOG project the mobile robot is using a public 
transport shuttle to cover further distances. Thus, the robot 
must detect obstacles typical for public transport, such as 
luggage or the feet and legs of passengers. The robot enters 
and exits the shuttle via a wheelchair ramp. The ramp does 
not have a physical barrier to limit the traversable area, so 
the robot's obstacle detection should perceive the drop offs 
on each side of the ramp as obstacles. Figure 1 shows the 
robot entering the automated public transport shuttle in 
Lauenburg via a wheelchair ramp. 

The environment- and application-specific require-
ments can be summarized into six points: (1) Robustness to 
uneven ground, (2) successful curb detection, (3) success-
ful drop off detection, (4) successful pedestrian detection, 
(5) successful detection of typical static obstacles, and (6)
successful detection of public transport-specific obstacles.
Based on these six requirements, a set of test scenarios can
be developed that allows the evaluation of obstacle detec-
tion approaches for mobile robots in public areas.
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Figure 1. One of the TaBuLa-LOG robots entering the auto-
mated public transport shuttle in Lauenburg. 

5 EXPERIMENTAL SETUP 

This section describes the experimental setup. It there-
fore includes the derivation of test scenarios from the pre-
viously presented requirements as well as the selection, 
presentation and parameterization of the obstacle detection 
approach. 

5.1 DERIVATION AND RECORDING OF TEST SCENARIOS  

To evaluate the obstacle detection approach regarding the 
six main requirements presented in the previous section, a 
total of eight test scenarios were developed in a way that 
allows each requirement being tested in at least two sce-
narios. 

 In terms of robustness to ground irregularities, two sce-
narios (scenarios 1 & 2) were developed with different 
types of cobblestones as the ground surface to be driven 
on. The varying degree of unevenness allows for estimat-
ing whether the susceptibility to errors is proportional to 
the unevenness of the ground. Scenario 3 aims to verify 
the detection of curbs. It also includes various typical static 
obstacles, such as trees and flower beds. Scenario 4 in-
volves the drop off between the walkway and the road in 
the form of a curb, which should also be recognized as an 
impassable area. 

The focus of scenario 5 is the detection of a pedestrian 
walking around the standing robot. While the robot is sta-
tionary in scenario 5, scenario 6 envisions a dynamic and 
versatile sidewalk situation in which the robot drives past 
curbs, drop offs, pedestrians, and typical static obstacles 
such as parking meters, fences, or lampposts that should 
be identified as obstacles. The entry and exit of the robot 
into an autonomous public transport shuttle via a ramp are 
simulated in scenario 7 using a shuttle mock-up. In addi-
tion to the drop offs at the ramp’s edges, the detection of 
passengers as well as luggage is tested in this scenario. 

Finally, Scenario 8 represents a collection of situations 
that were initially assessed as challenging for the obstacle 
detection system. These include changing light conditions, 
the detection of delicate and detailed objects, as well as 
objects with grid-like or reflective features. Table 1 pro-
vides an overview of the coverage of the individual re-
quirements by the developed test scenarios. 

(a) (b) (c) (d) 

(e) (f) (g) (h) 

Figure 2. Overview over the eight test scenarios: (a) Scenario 1: Moderate cobblestone (b) Scenario 2: Rough cobblestone (c) 
Scenario 3: Curb detection (d) Scenario 4: Drop off detection (e) Scenario 5: Pedestrian detection (f) Scenario 6: 
Walkway (g) Scenario 7: Public transport shuttle (h) Scenario 8: Challenging situations (exemplary: changing light 
condition). 
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Table 1. Derivation of test scenarios from requirements. 
Scenario 

Requirement 1 2 3 4 5 6 7 8 
  Robustness   
Curb detection    
Drop off detection   

Pedestrian detection  

Typical static obstacles     
PT-specific obstacles  

Scenario 1: Moderate cobblestone; Scenario 2: Rough 
cobblestone; Scenario 3: Curb detection; Scenario 4: 
Drop off detection; Scenario 5: Pedestrian detection; 
Scenario 6: Walkway; Scenario 7: Public transport 
(PT) shuttle Scenario 8: Challenging situations 

To record the test scenarios, environments were 
sought that best matched the developed test scenarios. In 
Figure 2 these scenario locations are shown. Sensor data 
from four downward-facing stereo cameras mounted 
around the robot was recorded in the form of ROS bag files. 
Figure 3 shows the robot’s sensor fields of view in a dimen-
sioned representation as well as the actual sensor data from 
scenario 1 in the form of 3D point clouds overlaid with 
camera images for visualization purposes. The right image 

of Figure 3 further illustrates how all four camera images 
are viewed simultaneously within one evaluation step. This 
is done with the help of the visualization software RViz. 

5.2 THE OBSTACLE DETECTION APPROACH 

As shown in Section 2, six alternative open source ap-
proaches were identified for further consideration. These 
are the RTAB-Map obstacles_detection ROS node, the 
GndNet Python application, the elevation_mapping ROS 
package, the hector_elevation_mapping ROS package, the 
Move Base Flex (MBF) navigation stack, and the develop-
ment of a custom solution based on Point Cloud Library 
(PCL) functions. 

To select a suitable approach, particular focus was placed 
on hardware and software compatibility of the approaches 

with the existing system as well as on the ability to distin-
guish drivable surfaces from obstacles. After comparing 
the possible alternative approaches (see Table 2), the 
RTAB-Map obstacles_detection ROS node and the custom 
solution based on the PCL functions emerge as the most 
suitable solutions regarding the system-specific require-
ments. 

Table 2. Selecting an obstacle detection approach. 

Approach 
Compatibility Traversability 

detection Hardware Software 
   RTAB-Map    
GndNet N/A   
ANYbotics  N/A  
hector  N/A  
MBF    
PCL    

   A closer look at the RTAB-Map node reveals that it is 
also based on those PCL functions that are relevant for seg-
menting traversable surfaces and obstacles and gives ac-
cess to all relevant parameters of the individual functions. 
Accordingly, the additional effort of a custom development 
exceeds the benefit, since with the RTAB-Map obsta-
cles_detection ROS node a ready-to-use, compatible, and 
manually adaptable implementation is already available, 
which is thus selected for further examination. To segment 
sensor data into traversable areas and obstacles, the 
RTAB-Map obstacles_detection node uses the surface nor-
mal vectors of the individual measurement points as a de-
cision criterion. Thus, the measurement points are classi-
fied based on their surface orientation in three-dimensional 
space. A schematic overview of the functional principle is 
shown in Figure 4.  

Figure 4. Functional principle of the RTAB-Map obsta-
cles_detection node. 

The system input is sensor data in the form of 3D point 
clouds, which in this case are generated by stereo cameras. 
To increase data processing efficiency, the input point 
cloud is first downsampled using a voxel grid. The 

Figure 3. Dimensioned (in mm) representation of the 
sensor fields of view (left) and visualization of 
the real sensor data (right). 
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calculation of the normals is based on a defined number of 
neighboring points or their spatial location. With the help 
of a threshold value, it can then be determined by how 
many degrees a normal vector may deviate from a perpen-
dicular orientation to be still classified as traversable. If this 
threshold value is exceeded, the measuring point is classi-
fied as an obstacle. 

To reduce the effect of outlying measurement values, 
clustering is then performed, in which a minimum size can 
be used to specify how many measurement points must be 
contained in a cluster to be considered a contiguous obsta-
cle. Finally, the original measurement points are divided 
into two separate point clouds, one each for traversable ar-
eas and obstacles. They serve as the output of the node and 
can then be further processed or directly integrated into the 
navigation of the robot. 

5.3 PARAMETERIZING THE OBSTACLE DETECTION 

Before the obstacle detection system can be applied to 
the test scenarios, it first needs to be calibrated inde-
pendently from the test scenarios. This is done using 3D 
printed objects that are constructed according to the initial 
requirements. To consider the minimum size of obstacles, 
a cuboid and a cylinder with edge lengths of 5 cm are used 
to be detected as obstacles by the system. To also represent 
the maximum slope of traversable surfaces, two wedges are 
constructed, which are characterized by surface slopes of 
30 % and 45 %. While a slope of 30 % does not represent 
an obstacle, a slope of 45 % should be recognized as one. 
Based on these objects, the parameters of the RTAB-Map 
obstacles_detection node are adjusted until the results 
matched the expected values. Figure 5 illustrates the de-
scribed calibration process. 

6 EXPERIMENTAL RESULTS 

In this section, the results of the conducted experiments 
will be briefly summarized. 

The eight test scenarios comprise a total of 1,334 eval-
uation steps, which together include 2,638 obstacles. Of 
these obstacles, 2,208 were fully detected, 178 were par-
tially detected, and 252 were not detected (false negatives). 
In addition, a total of 1,657 false positive classifications 
were recorded. This results in an overall detection rate of 
83.7% and a mean absolute error (MAE) of 1.43 misclassi-
fications per evaluation step. Table 3 provides an overview 
of the summarized results of all eight test scenarios.  Sce-
narios one and two do not focus on the detection of explicit 
obstacles, but rather on the effect of differently uneven sur-
faces on the error development. Thus, there is no value for 
the detection rate for these scenarios. 

Figure 5. Calibration of the obstacle detection system using 
3D printed objects (above) and the front sensor 
image with the output of the obstacle detection 
visualized in RViz (below). 

7 DISCUSSING THE EXPERIMENTAL RESULTS 

The discussion of the experimental results is the main 
focus of this section. Beyond the evaluation of the results 
throughout the different test scenarios, this section also ad-
dresses the limitations associated with this work. 

The test scenarios in which the obstacle detection sys-
tem performs best in terms of both detection rate and MAE 
are (3) curb detection, (5) pedestrian detection, (6) walk-
way, (8) and challenging situations. These four scenarios 
form a distinctive cluster with high detection rates between 
88.37 % and 100 % and simultaneously relatively low 
mean absolute errors between 0.12 and 0.65. The detection 
of curbs (3) and pedestrians (5) stand out in particular with 
detection rates of 100 % and 99.61 %. Regarding the MAE, 
the fifth scenario performs minimally worse as well, but 
with 0.32 misclassifications per evaluation step, it is still in 
a very good range in the overall comparison. Thus, the de-
tection of a curb on flat ground (Figure 6), and the detection 
of a moving person (Figure 7) pose no challenge. 
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Figure 6. Successful detection of a curb on a flat ground 
surface. 

Figure 7. Successful detection of a pedestrian and other ob-
stacles with clearly visible vertical surfaces. 

Scenario 8, consisting of several individual challeng-
ing situations, shows decreasing performance regarding 
both key metrics. In terms of detection rate, this is due to 
the partial failure to detect a gully cover that was selected 
as particularly challenging because of its grid-like struc-
ture. However, as soon as the robot is closer to the object, 
it can be successfully detected as an obstacle. Furthermore, 
concerning the MAE, the situation with changing lighting 
conditions can be identified as the cause of the decrease in 
performance. Overexposure of the stereo camera image 
leads to partially critical false positive misclassifications 
directly next to and in front of the robot. Despite the de-
manding situations, the remaining individual scenarios do 
not pose a critical challenge for obstacle detection.  

The obstacle detection performance in the walkway 
scenario (6) is lower than in the previous scenarios in terms 
of both indicator values. Considering the detection rate, the 
failed identification of the drop off between the walkway 
and the road can be identified as the cause of the error. The 
failed detection of these safety-critical obstacles also de-
cides that the overall performance of this scenario cannot 
be rated as satisfactory despite otherwise satisfactory val-
ues of the key metrics overall. False negative classifications 
correspond to a present but unrecognized obstacle and thus 
tend to have a significantly larger impact on safety. Failure 
to detect pedestrians would result in a high risk of injury. 
Undetected drop offs could additionally cause damage to 
the robot itself. False positives on the other hand result in 
sudden and unexpected stops of the robot. This hinders op-
eration, but also poses a risk for rear-end collisions. 

Table 3. Experimental results and key performance figures for all eight test scenarios. 
Scenario 

1 2 3 4 5 6 7 8 total 

          Frames 141 144 140 147 136 156 202 268 1,334 
Obstacles 0 0 269 139 255 404 1,206 365 2,638 
Fully detected 0 0 269 0 254 357 973 355 2,208 
Partially detected 0 0 0 13 1 20 144 0 178 
Not detected 0 0 0 126 0 27 89 10 252 
False positive 81 284 17 59 44 74 945 153 1,657 

          Detection rate N/A N/A 100% 0.00% 99.61% 88.37% 80.68% 97.26% 83.70% 
Ø FN/Frame 0 0 0 0.86 0 0.17 0.44 0.04 0.19 
Ø FP/Frame 0.58 1.97 0.12 0.40 0.32 0.47 4.68 0.57 1.24 
MAE 0.58 1.97 0.12 1.26 0.32 0.65 5.12 0.61 1.43 

Scenario 1: Moderate cobblestone; Scenario 2: Rough cobblestone; Scenario 3: Curb detection;   
Scenario 4: Drop off detection; Scenario 5: Pedestrian detection; Scenario 6: Walkway; Scenario 7: PT shuttle 
Scenario 8: Challenging situations 
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Regarding the MAE, the performance within scenario 
(6) is mainly inhibited by misclassifications due to overex-
posed sensor images as well as reflective surfaces. Thus,
the exposure conditions again represent an influencing fac-
tor on the system performance. A case of false positive
classifications due to overexposure is shown in Figure 8.

Considering the MAE only, the obstacle detection per-
formance within the moderate cobblestone scenario (1) is 
also on the same level as the before mentioned scenarios: 
Apart from misclassifications resulting from strong tilting 
movements when turning on the spot, almost no other crit-
ical misclassifications occur while driving over uniform 
and regularly laid cobblestones. Accordingly, the obsta-
cles_detection node shows robustness against driving on 
moderately uneven ground surfaces. 

Figure 8. Critical false positive classifications immediately 
in front of the robot due to a large overexposed 
area of the stereo camera image (leaving a build-
ing through a door).  

The remaining scenarios (2) rough cobblestone, (4) 
drop off detection, and (7) public transport shuttle cause 
significantly greater difficulties for the obstacle detection 
system. In the rough cobblestone scenario (2), critical mis-
classifications already occur during regular travel at in-
creased speed due to stronger tilting movements resulting 
from increased unevenness of the ground surface compared 
to scenario (1) with moderate cobblestone. These tilting 
movements result in a characteristic error pattern that is 
shown in Figure 9. On the side to which the robot tilts, the 
measurement points of the sensor point cloud appear com-
pressed, while the measurement points on the other side 
have gaps. Both lead to a geometric distortion, which en-
tails a deflection of the normals and thus a classification as 
obstacles. Overall, the MAE of 1.97 is significantly higher 
than in scenario (1). This suggests that the number of de-
fects occurring on average increases the more uneven and 
irregular the ground surface.  

Figure 9. Characteristic error pattern of tilting movements 
of the robot resulting in false positive classifica-
tions while driving on rough cobblestone. 

While the performance in the shuttle scenario (7) is 
comparable to the scenarios of the top group considering 
only the detection rate, the MAE of 5.12 misclassifications 
per evaluation step represents an enormously high value. 
The cause of this high error rate lies again in tilting move-
ments and the inclined position of the robot when driving 
onto the shuttle ramp. This leads to a virtual inclination of 
all sensor data as well as the characteristic error pattern of 
tilting movements, which affects the sensor data around the 
robot (see Figure 9 for reference) and can lead to critical 
errors. 

In addition, this scenario results in a failed detection of 
the drop offs on the sides of the shuttle ramp. Failing to 
detect these critical obstacles already precludes an overall 
evaluation of the performance as satisfactory for the same 
reason as in the walkway scenario (6). The detection rate of 
80.68 % within this scenario also illustrates that, apart from 
the ramp drop offs, the detection of the public transport-
specific obstacles does not pose a challenge for the obsta-
cles_detection node. The enormously high MAE value of 
5.12 misclassifications per evaluation step within scenario 
(7) also has a significant impact on the overall metric. Ex-
cluding scenario (7) from calculating the overall MAE re-
sults in a reduction from 1.43 to only 0.79 average misclas-
sifications per evaluation step, and therefore nearly halving 
the original value.

With a detection rate of 0 %, the obstacle detection in 
the drop off detection scenario (4) performs by far the worst 
regarding this key figure. The main purpose of the scenario 
is the detection of an again safety-critical drop offs between 
the walkway and the road, which cannot be achieved suc-
cessfully similar to the walkway (6) and shuttle (7) scenar-
ios, resulting in the extremely low detection rate. The ex-
tremely low detection rate of this scenario has an enormous 
impact on the aggregated detection rate, similar to the 
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effect of the shuttle scenario (7) on the MAE. Excluding 
the drop off detection scenario (4) when calculating the 
overall detection rate, it increases from 83.7 % to 93.18 %. 

In summary, the RTAB-Map obstacles_detection node 
is robust to a certain degree against unevenness of the 
ground, provides stable and detailed results for clearly vis-
ible obstacle surfaces, and is operational on mobile compu-
ting units. Especially the detection of drop offs as well as 
the susceptibility to tilt and changing light conditions 
turned out to be challenging for the given approach. The 
use of the system in its current form in mobile robots oper-
ating in public space is therefore not advisable due to the 
discussed shortcomings. In particular, the failure to detect 
drop offs poses too great a safety risk. 

It is noticeable, that the error causes lie less in algo-
rithm-internal errors than in corrupt sensor data. In the case 
of the unrecognized drop offs it can be stated that these do 
not exist in the sensor point clouds at all. This is because in 
the case of the curb, the vertical face of the drop off is hid-
den from the sensors behind the top edge. In the case of the 
shuttle ramp, on the other hand, no vertical surfaces exist 
that could be detected as obstacles. Figure 10 and 11 illus-
trate how hidden drop offs like for example curbs or of 
shuttle ramps cannot be detected as obstacles as they are 
not existent in the sensor data that serves as input for the 
obstacles_detection node 

Figure 10. The drop off of a curb with its vertical surface 
hidden from the sensors is not represented in the 
sensor point clouds and poses a significant and 
safety-critical challenge to the obstacle detection. 

Accordingly, in order to use the investigated approach 
in a real environment and especially in combination with a 
public transport shuttle, it would have to be ensured that 
any drop offs are represented as surfaces with steep gradi-
ents in the data used as input for the obstacle detection. 
Only then can they be successfully detected as obstacles by 
the obstacles_detection node. 

Figure 11. Occluded regions that are not directly captured in 
the sensor data cannot be classified as non-tra-
versable. 

7.1 LIMITATIONS 

Although the present work was able to identify funda-
mental strengths and weaknesses of the approach studied, 
specific questions could not be answered or could only be 
answered to some extent. While the mainly quantitative ex-
periment evaluation allows a general comparison of differ-
ent approaches, the purely objective consideration of the 
error metrics does not allow a final conclusion on the actual 
severity of occurring errors. The assessment of an error’s 
severity is currently based on a subjective estimation drawn 
from previous experience. To ensure universal transferabil-
ity to different use cases, this should be the starting point 
for identifying a more objective evaluation option. 

Another limitation regarding general transferability is 
the application-specific parameterization of the detection 
algorithm used. The parameterization was performed with 
specifically selected test objects (see Section 5.3). Their ge-
ometric properties such as size and shape reflect constraints 
of the research project in which this study was conducted, 
e.g. sensor properties and driving dynamics of the robot
used.

8  CONCLUSION AND OUTLOOK 

In this paper, the integration and evaluation of an 3D 
obstacle detection system for the close range of mobile ro-
bots operating in public areas was carried out. Four do-
mains could be identified which impose requirements on 
object detection systems for such robots: System specific 
requirements, general obstacle properties, environment-
specific requirements, and application-specific require-
ments. 

Based on these requirements, eight test scenarios, con-
sisting of real scenes of the operation of a mobile robot, 
were developed to allow performance evaluation. These 
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include, for example, operation on sidewalks as well as in 
combination with public transport vehicles, driving over 
different ground surfaces, and detection of pedestrians. 
Furthermore, also based on the requirements, the obsta-
cles_detection node of the RTAB-Map ROS package was 
selected for the implementation of obstacle detection and 
evaluated using the test scenarios and performance and er-
ror metrics. 

Overall, the obstacles_detection node provides very 
good results for scenarios with clearly visible vertical ob-
stacle surfaces while being robust to a certain degree 
against unevenness of the ground surface. On flat surfaces, 
against which obstacles stand out, obstacle detection per-
formance is best, as expected. The detection of obstacles 
with non-enclosed, detailed surfaces, such as fine branches, 
also performed well. 

Three particular challenges can be identified for the 
RTAB-Map obstacle detection system, based on the exper-
imental results across all scenarios:  

• The detection of drop offs that do not appear as
explicit obstacles in the sensor data

• Faulty classifications as a result of tilting move-
ments of the robot and its sensors

• Faulty classifications as a result of changing
lighting conditions

All three challenges occur in multiple scenarios. How-
ever, the source of these errors lies in the point clouds gen-
erated by the sensors rather than in the algorithm itself. The 
point clouds contain gaps where drop offs are located, dis-
tortions and missing points due to tilting movements of the 
robot, as well as increased noise of the measurements due 
to overexposure of stereo camera images. Since this flawed 
point cloud data serves as input for the obstacles_detection 
node, even correct classifications lead to incorrect overall 
results. One possible solution for dealing with gaps in point 
cloud data could be the adoption of elevation maps. These 
create a closed surface of the terrain and are therefore also 
suitable for detecting drop offs, which are represented as 
steep sloping surfaces. Implementations of elevation map-
ping approaches are also available as ROS packages (see 
chapter 2). 

Across the various scenarios, there are several objects 
which, from a purely geometric point of view, represent ob-
stacles, but could theoretically be traversed by the robot 
due to their physical properties (e.g. tufts of grass or 
leaves). While the RTAB-Map node correctly recognizes 
them as geometric obstacles, an additional semantic classi-
fication would allow the robot to drive over these types of 
obstacles. 
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