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his paper presents an optimization method of 
Container Relocation Problem (CRP) via 

Reinforcement Learning (RL) based on heuristic rules. 
The method to calculate theoretical lowest relocation rate 
is also briefly explained. As the result, training models for 
different dimensional bays are provided. Compared to 
the theoretical value, the result relocation rate is 
acceptable with high inference speed. Furthermore, 
extended CRP in block will be briefly demonstrated. 

[Keywords: container relocation problem; block relocation 
problem; reinforcement learning; ML-Agents] 

n dieser Arbeit wird eine Optimierungsmethode für 
das Container Relocation Problem (CRP) mittels 

Reinforcement Learning (RL) vorgestellt, die auf 
heuristischen Regeln basiert. Eine Methode zur 
Berechnung der theoretisch niedrigsten Relocation Rate 
wird ebenfalls erläutert. Als Ergebnis werden 
Trainingsmodelle für unterschiedlich dimensionierte 
Bays bereitgestellt. Verglichen mit dem theoretischen 
Wert, ist die Relocation Rate zufriedenstellend und die 
Inferenz-Geschwindigkeit hoch. Außerdem wird eine 
erweiterte Version des CRPs die sich auf einen ganzen 
Containerblock bezieht, präsentiert. 

[Schlüsselwörter: Container Relocation Problem; Block 
Relocation Problem; Reinforcement Learning; ML-Agents] 

1 INTRODUCTION 

With the increase in global container trade, efficient 
transshipment of terminal containers is essential. 
Intelligent container relocation in an inland container 
terminal or port is significant to improve performance 
measures like task completion time, energy consumption, 
container rehandling rates and operation efficiency of a 
terminal.  

In multimodal terminals, the cranes not only have to 
serve the container ships, the trucks and the railroad at the 
yard side, but also serve as stacking cranes. Inbound and 
outbound containers are often stored at the container 
terminals for a certain period of time, waiting to be loaded 
onto the train or ship, or to be delivered by trucks. 

A rail-mounted gantry crane is usually used for 
handling containers at the terminal. The containers are 
stacked in storage blocks at the container yard to minimize 
storage space (Fig 1). Thus, only the topmost container is 
directly available for a retrieval. Relocations (also known 
as reshuffling) are necessary to grant access to a container 
which is not topmost of the stack. These unproductive 
moves performed by the yard cranes should be minimized 
to improve the terminal efficiency. 

 
Figure 1. Container yard structure and terms (figure from 

[ZF12]) with coordinate directions 

For this purpose, a Container Relocation Problem 
(CRP) (also known as Block Relocation Problem (BRP) 
[GBJ18]) is considered in this article.  

After a brief literature review in Section 2 we will 
describe our approach to solve the CRP for a 2-
dimensional stacking area considering one bay in Section 
4. We use the ML-Agents toolkit from Unity to implement 
Reinforcement Learning based on heuristic rules to solve 
the CRP. We present the experimental results at the end of 
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that section of our approach and a comparison to other 
existing approaches.  

In common multimodal container terminals, the 
relocations won’t be limited to one bay of the container 
blocks. The different bays of one block are not 
independent from each other, but can be operated by crane 
movements along the x-axis. We will address this issue in 
Section 6 by brief previewing the extension of the CRP, 
which aims to optimize a 3-dimensional stacking area, i.e., 
an entire block rather than one bay. Our main goal is to 
minimize the average operation (retrieval, relocation and 
stacking) time of containers. Besides, to visualize the 
process, a simulation system is developed with Unity 
Engine. 

2 PRIOR RESEARCH 

2.1 THE CONTAINER RELOCATION PROBLEM 

[CVR14] classified storage yard operations in 
container terminals such as, storage space assignment to 
containers, yard crane scheduling, routing of vehicles 
within the terminal, optimizing relocating operations at the 
storage blocks, reviewing scientific journal papers 
between 2004 and 2012. [KE21] extended this 
classification by adding recent research papers. 

In most of the papers for the CRP research, the 
objective is to find an optimal sequence of crane 
movement to retrieve all the containers from a bay 
according to a predefined retrieval sequence, so the 
number of movements is minimized [CSV20]. However, 
there are also approaches that focus on other optimization 
goals as minimizing the crane’s working time associated 
with any movement like relocation or retrieval of 
containers [LL10], [FB12], [SAT19]. 

As the CRP is known as NP hard [CSV12], only small 
instances can be solved with exact methods in reasonable 
time. So, several heuristic approaches can be found in 
literature. For a comprehensive literature survey of the 
CRP and various exact and heuristic solution methods that 
have been applied to the CRP, we refer to [SAT19], 
[MGM20], [CSV20].  

2.2 REINFORCEMENT LEARNING 

Reinforcement Learning is one of the three basic 
paradigms of machine learning, together with supervised 
learning and unsupervised learning. Back in 1996, 
Kaelbling et al. described Reinforcement Learning as “the 
problem faced by an agent that learns behavior through 
trial-and-error interactions with a dynamic environment” 
[KLM96].

Proximal Policy Optimization (PPO) is a new class of 
reinforcement learning algorithms, which perform 
comparable or better performance than other modern 
approaches like TRPO (Trust Region Policy Optimization) 
while being much simpler to implement and tune 
[SWDRK17]. 

Jerry Elman [Elm93] proposed the idea of training a 
learning machine with a curriculum back in 1993. Bengio 
et al. [BLCW09] presented a summary of curriculum 
learning back in the day. They proposed curriculum 
learning as a method for a stepwise progression of the 
complexity of the data samples used during the training 
process.  

In Section 4 we use PPO as the training algorithm and 
apply curriculum learning to accelerate the training process. 

2.3 OTHER ALGORITHMS 

• Iterative Deepening A* (IDA*) algorithm [ZQL12] 
[LZL20]: Zhu et al. developed IDA* algorithms for 
the unrestricted CRP.  By using their derived 
dominance property, it takes advantages of two new 
lower bounds and several probe heuristics. 
Successive target containers can be retrieved as long 
as they are on top of their respective stacks at the 
time of retrieval, until the minimum equivalent 
layout is reached. 

• Genetic Algorithm (GA) [MGM20] [SEE15]: 
Gamal et al. propose an optimization methodology 
for solving CRP using genetic algorithm. The 
computational results show the effectiveness of the 
proposed methodology for container terminal. It is 
widely applied because of its ability to locate the 
optimal solution in the global solution space. 

• Beam Search [WT10]: Beam Search (BS) is a 
heuristic search algorithm based on breadth-first 
branch-and-bound algorithm. The term "beam 
search" was created by Raj Reddy in 1977. 

3 PROBLEM DESCRIPTION  

3.1 CONTAINER RELOCATION PROBLEM (CRP) 

 
Figure 2. Layout demonstration of CRP, labels mean the 

retrieval priority, smaller value will be retrieved 
earlier [JZWW21] 
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The goal of CRP is to minimize the relocations (or 
relocation rate) during the container retrieval process. 
Researchers use priority label to identify the retrieval 
sequence of containers. The container with smallest label 
number will be retrieved at first. 

Static / Dynamic CRP: If there are no new containers 
during the retrieval process to be stacked on the bay, the 
problem is called static CRP, otherwise it’s called dynamic 
CRP. In this paper, the static CRP will be mainly 
researched. Since the crane needs to serve the whole block, 
the dynamic CRP within one bay is usually not under 
consideration.  

Restricted / Unrestricted CRP: CRP is restricted, if 
relocations are only allowed for the blocking containers 
above the container with highest priority. Otherwise, it’s 
unrestricted, which means the unrestricted CRP is the 
super-set of restricted CRP. Generally, it has lower 
relocation rate and its corresponding algorithm is more 
complex than restricted CRP. 

Stochastic CRP: If the retrieval sequence is not fully 
known, for instance, several containers shall be stacked on 
a train, then the retrieval sequence is not important as long 
as the corresponding containers are stacked on the correct 
position [BMBJ13], [GMB18]. 

CRP in block: In reality, relocations could happen in 
whole or part of container yard, which is defined as a block 
(Figure 1). In this scenario, the relocation rate could not be 
the single judgement of the problem, instead, several new 
judgements were introduced, like average operation time of 
container and average waiting time of truck [FHVX13]. 
Furthermore, the above-described types could be combined 
in this scenario.  

3.2 RULES FOR UNRESTRICTED STATIC CRP 

We consider the following common properties of the 
CRP: 

• Crane performs the operation (retrieval or relocation, 
no stacking) with only one container at the same 
time.  

• Only the topmost container could be operated 
(relocation or retrieval). 

• All containers have same size. 

• The relocation within the bay is limited [CVS11], 
which means no repeat operation is allowed.  

• The operations happen only in one bay. 

• The containers have unique predefined priorities, no 
containers have same priority. 

• Bay should never be full. 

• No new container will be stacked during retrieval 
process. 

• The relocation could happen between any two stacks 
as long as it is possible, e.g., relocation is 
impossible, if target stack is full. 

4 OUR APPROACH 

4.1 TOOL INTRODUCING 

Unity Engine: Unity Engine is a 3D real time engine 
for simulation and game development. For the future 
implementation of Digital Twins (real-time crane control), 
the Unity Engine was chosen to be the solution to build the 
host computer application.  

ML-Agents: The Reinforcement Learning toolkit 
ML-Agents from Unity is used as training toolkit. The ML-
Agents uses PPO Algorithm by default. Several learning 
strategies are also supported by this toolkit, such as 
curriculum learning, imitation learning and behavioral 
cloning [Uni21]. In this paper, we used curriculum learning 
to accelerate the training process. 

4.2 RL TRAINING 

In this section our training method will be introduced. 
The training part in this paper is designed only for 
relocation, since retrieval process does not need to be 
trained and should be determined before making any 
relocation decision. 

The term “episode” is introduced in ML-Agents, in 
this context it means the period starting from initialization 
of new layout of the bay to finishing retrieval of all the 
containers in current layout. With help of this concept, the 
reward will be summarized during the operation process 
and refreshed when episode ends to ensure the rewards are 
for the whole episode rather than each step. 

4.2.1 OBSERVATIONS OF RL 

The observation structure is shown below. 

                        (Dim-Z) Hot Encoding []  
                                                   (1) Z-index    
Observation      Stack Info []      (1) Can pick up   
                                                   (1) Can stack   
                                                   (1) Blocking Degree   
                                                   (MaxTier * (2 + MaxTier))  
                                                   Container Info [] 
 (MaxTier) Hot Encoding [] 
Container Info (1) Whether moveable   
 (1) Priority  
Figure 3. Observation structure, each square bracket 

contains a list. The parenthesis means the size of 
the object  
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The observation size of a stack is:  

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + 4 + 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑑𝑑𝑚𝑚𝑚𝑚 ∗ (2 + 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑑𝑑𝑚𝑚𝑚𝑚) 

Total observation size: 

𝑠𝑠𝑠𝑠𝑡𝑡𝑠𝑠𝑠𝑠𝑡𝑡 =  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∗ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

The Hot Encoding is the common way for machine 
learning to handle the categorical data. In this paper, the 
simplest One-Hot encoding was used. For corresponding z-
index and tier, the element in one-hot array should be 1, 
other elements should be 0. 

The “can pick up” property considers two aspects: (1) 
Whether the stack is empty. (2) Whether the stack was 
visited last time with unsuccessful operation. The second 
condition is to avoid repeating operation done by the agent, 
since it could fall into local optimal solution. And same 
with the “can stack” property, only need to change the first 
judgement to “whether the stack is full”. 

The z-index in the stack info is to ensure the trainer 
will get correct index after shuffling of the observations, 
which will help the agent not fall into local optima. 

The “whether moveable” observation is to tell the 
trainer whether the corresponding container is moveable 
(relocatable). Only the topmost container could be 
relocated, and if the stack is empty, no container could be 
removed from this stack. 

Jiang et al. have introduced a concept called “blocking 
degree” [JZWW21]. It describes how “severe” the 
corresponding stack is blocked. This value can be 
calculated by the following pseudo code: 

define blockingDegree = 0  
// elements in list are priorities 
Define stack = initStack 
while (stack.elementCount > 1)  
        // max priority means min label 

define c = stack.MaxPriority  
 

    // define upper stack includes c 
define hStack = stack[c.index, end]  
 

    if (hStack.elementCount > 1)  
        foreach (x in hStack exclude c)  
            blockingDegree += x - c 
 
    // update list, without c 
    stack = stack[0, c.index]  
  
return blockingDegree  
     

 

4   
3 6 7 
1 5 2 

 S1   S2  S3           
Figure 4. blocking degree calculation. 

During our implementation, this concept seems to be 
insufficient. As Figure 4 shows, the blocking degrees of S1 
and S3 calculated via the method from Jiang et al. 
[JZWW21] should both be 5, whereas the S1 has two 
containers above the container with highest priority. Thus, 
we introduced a new concept called “blocking count”, 
which can be calculated similar with the “blocking degree”, 
only needs to change the “blockingDegree += x – c” to 
“blockingCount += 1”. The training result with the 
“blocking count” is slightly better than the version without 
“blocking count”.  

 
Figure 5. Comparison between with “blocking count” and 

without “blocking count”  

4.2.2 OUTPUT 

As mentioned above, all decisions the agent makes are 
for relocation, retrieval will be automatically determined 
before requesting decision from agent brain. 

Action (output) can be described as (z0, z1), z0 means 
the pick-up index, z1 is stack index. Obviously, z0 and z1 
should have different value, besides, stack of z0 must not 
be empty and stack of z1 must not be full. If all the 
containers in the bay are retrieved, the episode of current 
scenario is finished, a new episode will begin to continue 
training until it reaches the predefined max step.  

4.2.3 REWARDING SYSTEM 

• Minus “repeat times”, if the agent performs a 
repeat operation. A repeat operation means the 
action is same with the last one when the last 
operation failed. Without this punishment, the agent 
will keep repeating unsuccessful action. To ensure 
this rule will be well followed, the reward value is 
not normalized. 

• Minus “0.1” every step. The more step the agent 
takes to retrieve all the containers, the more 
punishment it will get. 

• Add “1” if a container is retrieved. 

• (optional) Minus “0.01 * z1”. This will encourage 
the agent to relocate the container near the waiting 
position of truck. 
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4.3 THEORETICAL OPTIMAL SOLUTION 

The theoretical optimal relocation rate can be archived 
via tree-search, by which all the possibilities of relocation 
in a layout could be achieved. Repeat of operations should 
be avoided during implementation, otherwise the program 
will fall into infinity loop. Our solution to solve the 
repeating problem is check of all parent nodes to see 
whether there are nodes which have same layout with 
current node. 

6        6   
4 5   4 5 6  4 5  
1 2 3  1 2 3  1 2 3 

 
 

Figure 6. example of repeat operation case 

There are other methods to accelerate the traverse 
process, e.g., ignoring all the meaningless relocation and 
using thread to fully use the power of CPU to run instances 
simultaneously, etc. 

3    3   
1 2   1  2 

 
 

Figure 7. example of meaningless relocation 

Although, the traverse process is still very slow. 
Figure 8 shows the result of layout 4 * 3. The Total Time 
means the sum of time span that each instance took, 
average calculation time for one layout is 12 min. More 
detailed heuristic will accelerate the process remarkably. 
Another important point is that the traverse algorithm has 
no memory. For two scenarios with exactly the same layout, 
it will cost exactly double time. Despite this method can 
obtain the theoretical min relocations, it’s not practical for 
reality usage.

 
Figure 8. Theoretical lowest relocation rate for 4 * 3 layout  

The corresponding code can be found under 
https://github.com/idea-lei/CRP_LowBound. 

4.4 EVALUATION 

Max label: The initial container amount in the bay 
[WT10], which ensures no relocation are blocked. 

𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = (𝑠𝑠𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠 − 1) ∗ 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑑𝑑𝑚𝑚𝑚𝑚 + 1  

Average relocation rate: how many relocations are 
needed to move one container out. 

  𝐴𝐴𝐴𝐴𝑚𝑚 =  ∑𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑟𝑟𝑡𝑡𝑟𝑟T𝑟𝑟𝑖𝑖𝑟𝑟𝑠𝑠
𝒏𝒏𝒄𝒄𝒄𝒄𝒏𝒏𝒄𝒄𝒄𝒄𝒄𝒄𝒏𝒏𝒄𝒄𝒄𝒄

 

Optimization ratio: positive value means better result 
than best known. 

𝑂𝑂𝑂𝑂𝑠𝑠 =  
𝐴𝐴𝑚𝑚𝑚𝑚𝑏𝑏𝑟𝑟𝑠𝑠𝑠𝑠𝑏𝑏𝑟𝑟𝑡𝑡𝑏𝑏𝑟𝑟 −  𝐴𝐴𝑚𝑚𝑚𝑚𝑠𝑠𝑎𝑎𝑠𝑠ℎ𝑡𝑡𝑟𝑟

𝐴𝐴𝑚𝑚𝑚𝑚𝑏𝑏𝑟𝑟𝑠𝑠𝑠𝑠 𝑠𝑠𝑟𝑟𝑡𝑡𝑏𝑏𝑟𝑟
∗ 100% 

The result of each scenario from this paper has at least 
1000 instances (scenarios) to reduce fluctuation of the 
value, and the layouts are fully random generated. 
Although large number of instances were tested to reduce 
the fluctuation of the result, there still can be around 5% 
error that can’t be eliminated due to different layouts. 
Compared with the theoretical optimal relocation rate, the 
trained model will infer the result within 0.1s, which is 
much faster than the tree search. 

 

Average relocations (relocation rate), optimization ratio (opt) 
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3 * 3 7 3.01 (0.430) 3.38 (0.482) 3.38 (0.482) 3.38 (0.482) 3.20 (0.457) 5.19% 

3 * 4 9 5.06 (0.562) 5.85 (0.650) 5.95 (0.661) 5.67 (0.630) 5.71 (0.635) -0.79% 

4 * 3 10 4.15 (0.415) 4.98 (0.498) 4.95 (0.495) 4.85 (0.485) 4.51 (0.451) 7.01% 

4 * 4 13 - 8.55 (0.658) 8.57 (0.659) 8.43 (0.648) 8.62 (0.652) -0.60% 

5 * 3 13 - 5.80 (0.446) 5.80 (0.446) 5.75 (0.442) 5.77 (0.444) -0.45% 

Table 1. Comparison of results with different methods from other authors. The theoretical optimal solution is not 
fully listed because of the time consumption. 

https://github.com/idea-lei/CRP_LowBound
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Code and test results for this section (unrestricted 
static CRP) can be found under https://github.com/idea-
lei/CRP. 

5 CONCLUSION 

The static unrestricted CRP within one bay using RL 
was discussed in this paper, the training result is acceptable 
compared with theoretical lowest relocation rate but with 
much more time efficiency. The training is suitable for 
small size layout, for large layout, the training time will be 
relatively longer. The disadvantage of the method is that 
training relies much on experience to adjust the parameters 
of trainer, such as learning rate and hidden layers. Different 
configurations could lead to different result. Furthermore, 
the current version of ML-Agents toolkit (Release 18) 
could have bug, sometimes the training process could fail 
without any sign. We have needed to dynamically change 
the learning rate to keep the training process not to fail, and 
if the learning rate is too low, the model cannot be trained. 

 
Figure 9. Example of training failure 

6 FUTURE WORK 

The further work is separated in two parts, the first is 
to extend the problem definition, where the CRP should be 
combined with the crane scheduling problem (CSP), since 
CRP within one bay is not practical to be used in terminals. 
The second is to implement the Digital Twins for the 
terminal. 

6.1 DYNAMIC RESTRICTED CRP IN BLOCK 
COMBINED WITH CRANE SCHEDULING PROBLEM  

In reality, the dynamic restricted CRP shall be 
considered in block (or whole container yard). The 
unrestricted CRP in block won’t be considered, because the 
priorities of the containers could change dynamically due 
to the actual truck arrival time and stacking of new 
containers. Besides, the static CRP in whole block won’t 
happen often in practice, so it won’t be a mainstream topic, 
neither. 

The judgement of the CRP&CSP in block can vary, 
Fotuhi et al. [FHVX13] have introduced a method to reduce 
the average truck waiting time (despite it only considered 
about the CSP). This is a view for truck drivers. We intend 

to optimize the crane operation time of each container, 
which will maximize the port efficiency. These two 
judgements are almost the same and will collapse to be 
exactly the same if every truck takes only one container. 

 
Figure 10. Layout of the simulation, 1) crane hooks the 

picked-up container, 2) retrieval area in red, 3) 
stacking transporter in green, 4) the current block 
of this crane 

6.2 DIGITAL TWINS 

The approach is also intended for future usage like 
Digital Twins for real-time control of cranes. Much more 
visualized data will be granted with the development of the 
concept “Digital Twins”. Which means the management 
could become more intuitionistic with visualization of the 
operation process of the crane. The biggest challenge is to 
obtain the position data from all the moving objects 
(trucks, crane, etc.) and control of the objects. 
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