
DOI: 10.2195/lj_proc_wesselhoeft_en_202310_01
URN: urn:nbn:de:0009-14-58257

© 2023 Logistics Journal: Proceedings – ISSN 2192-9084 Page 1
Article is protected by German copyright law

Comparing Continuous Single-Agent Reinforcement
Learning Controls in a Simulated Logistic Environment

using NVIDIA Omniverse
Mike Wesselhöft

Philipp Braun
Jochen Kreutzfeldt

Institut of Technical Logistics

Technical University of Hamburg

ith the transition to Logistics 4.0, the increasing
demand for autonomous mobile robots (AMR) in

logistics has amplified the complexity of fleet control in
dynamic environments. Reinforcement learning (RL),
particularly decentralized RL algorithms, has emerged as
a potential solution given its ability to learn in uncertain
terrains. While discrete RL structures have shown merit,
their adaptability in logistics remains questionable due to
their inherent limitations. This paper presents a compar-
ative analysis of continuous RL algorithms - Advantage
Actor-Critic (A2C), Deep Deterministic Policy Gradient
(DDPG), and Proximal Policy Optimization (PPO) - in
the context of controlling a Turtlebot3 within a ware-
house scenario. Our findings reveal A2C as the frontrun-
ner in terms of success rate and training time, while
DDPG excels step minimization while PPO distinguishes
itself primarily through its relatively short training dura-
tion. This study underscores the potential of continuous
RL algorithms, especially A2C, in the future of AMR fleet
management in logistics. Significant work remains to be
done, particularly in the area of algorithmic fine-tuning.

[Keywords: logistics 4.0, autonomous mobile robots, reinforce-
ment learning, artificial intelligence, robotics]

it dem Übergang zur Logistik 4.0 hat der zuneh-
mende Bedarf an autonomen mobilen Robotern

(AMR) in der Logistik die Komplexität der Flottensteue-
rung in dynamischen Umgebungen erhöht. Reinforce-
ment Learning (RL), insbesondere dezentrale RL-
Algorithmen, haben sich aufgrund ihrer Fähigkeit, in un-
sicheren Umgebungen zu lernen, als potenzielle Lösung
erwiesen. Während sich diskrete RL-Strukturen bewährt
haben, bleibt ihre Anpassungsfähigkeit in der Logistik
aufgrund ihrer inhärenten Einschränkungen fraglich. In
diesem Beitrag wird eine vergleichende Analyse kontinu-
ierlicher RL-Algorithmen - Advantage Actor-Critic
(A2C), Deep Deterministic Policy Gradient (DDPG) und
Prox-imal Policy Optimization (PPO) - im Kontext der
Steuerung eines Turtlebot3 in einem Lagerszenario vor-
gestellt. Unsere Ergebnisse zeigen A2C als Spitzenreiter

in Bezug auf Erfolgsrate und Trainingszeit, während
DDPG bei der Minimierung der Episodenlänge punktet
und PPO lediglich mit einer geringen Trainingsdauer
aufwarten kann. Diese Studie unterstreicht das Potenzial
von kontinuierlichen RL-Algorithmen, insbesondere
A2C, für die Zukunft des AMR-Flottenmanagements in
der Logistik, wobei gerade im Bereich des Finetunings
der Algorithmen noch viel Arbeit zu tun ist.

[Schlüsselwörter: Logistik 4.0, Autonome Roboter, Reinforce-
ment Learning, Künstliche Intelligenz, Robotik]

1 INTRODUCTION

With the advancement towards Industry 4.0, there has
been a rapid increase in the demand for autonomous mobile
robots in various sectors, notably in logistics [1, 2]. This
can be attributed to the high degree of automation offered,
significantly enhancing the efficiency of operations and re-
ducing human error. However, as this sector evolves, so
does the complexity of controlling fleets of autonomous
mobile robots. The dynamic nature of logistics environ-
ments necessitates control algorithms that are not only ef-
ficient but also highly adaptable. Increasingly, warehouses
and distribution centers operate around the clock, with
many unforeseen changes in their environment. Therefore,
managing these fleets of autonomous mobile robots de-
mands sophisticated multi-agent path planning algorithms.

In recent years, reinforcement learning (RL) has
shown substantial promise in addressing these challenges.
RL algorithms possess the ability to learn optimal strategies
in complex, dynamic, and uncertain environments [3.,4.],
making them a suitable choice for multi-agent path plan-
ning problems [5.,6.]. However, as the complexity and
scale of such systems increase, the computational require-
ments also become a concern.

In this regard, decentralized reinforcement learning al-
gorithms are seen as an ideal choice, as they reduce the
computational effort while handling the flexibility [7.] of
the system [8]. The scalability of the algorithms controlling

W

M

DOI: 10.2195/lj_proc_wesselhoeft_en_202310_01
URN: urn:nbn:de:0009-14-58257

© 2023 Logistics Journal: Proceedings – ISSN 2192-9084 Page 2
Article is protected by German copyright law

the individual agents significantly depends on the effi-
ciency of the algorithms. Hence, choosing the optimal RL
algorithm for controlling the single agents becomes para-
mount to ensure overall system efficiency. Thus, this work
will perform a comparative analysis the three state of the
art reinforcement learning algorithms with continuous ac-
tion space - Advantage Actor-Critic (A2C, [9]), Proximal
Policy Optimization (PPO, [10}), and - Deep Deterministic
Policy Gradient (DDPG, [11]) in the context of controlling
a turtlebot3 in a warehouse scenario. The goal is to deter-
mine the most suitable RL algorithm that strikes a balance
between efficiency (maximize payload, while minimizing
time, energy consumption and costs), flexibility and com-
putational effort, thereby meeting the demanding needs of
logistics 4.0.

For this purpose, the work is structured as follows: The
second section introduces some basic definitions of single
agent path finding problems and basics of RL algorithms.
In the third section, related work is presented, before the
methodology and approach follow in the fourth section.
The work then closes with the results in the fifth and a sum-
mary in the last section.

2 REINFORCEMENT LEARNING

Reinforcement learning is a type of machine learning
where an agent learns to make decisions by taking actions
in an environment to maximize some cumulative reward.
The agent's goal is to learn a policy 𝜋, which is a mapping
from states to actions that maximizes the expected sum of
rewards. The cumulative reward, denoted by 𝐺௧, is com-
puted as follows in [12]:

𝐺௧ ൌ 𝑅௧ାଵ ൅ 𝛾𝑅௧ାଶ ൅ 𝛾𝑅௧ାଷ ൅ . . .ൌ ෍𝛾௞𝑅௧ା௞ାଵ

ஶ

௞ୀ଴

where 𝑅௧ା௞ାଵ is the reward at time 𝑡 ൅ 𝑘 ൅ 1 and 𝛾 ∈
ሺ0,1ሻ is the discount factor. Two fundamental concepts in
reinforcement learning are the value function 𝑉గሺ𝑠ሻ and the
action-value function 𝑄గሺ𝑠,𝑎ሻ, defined as (the subscripted
𝜋 denotes an explicit policy the value and action-value
function are computed on):

𝑉గሺ𝑠ሻ ൌ 𝐸గሾ𝐺௧ |𝑆௧ ൌ 𝑠ሿ

𝑄గሺ𝑠,𝑎ሻ ൌ 𝐸గሾ𝐺௧ |𝑆௧ ൌ 𝑠,𝐴௧ ൌ 𝑎ሿ

𝑉గሺ𝑠ሻ is the expected return from state 𝑆௧ ൌ 𝑠 under
policy 𝜋, and 𝑄గሺ𝑠,𝑎ሻ is the expected return after taking
action 𝐴௧ ൌ 𝑎 in state 𝑆௧ ൌ 𝑠 under policy 𝜋.

2.1 ADVANTAGE ACTOR CRITIC

Actor-critic methods are a type of reinforcement learn-
ing algorithms that maintain two models: an actor, which

determines the policy of the agent, and a critic, which esti-
mates the value function associated with the policy of the
actor. The name actor-critic is based on these two primary
components. The actor's job is to select actions, and the
critic's job is to estimate the value function used to criticize
the actions made by the actor. The actor updates its policy
in response to this criticism, hence the name actor-critic.

The Advantage Actor-Critic (A2C) method is a varia-
tion of the actor-critic approach, which introduces the con-
cept of an advantage function [9]. The advantage function
𝐴ሺ𝑠,𝑎ሻ essentially quantifies how much better it is to take
a certain action 𝑎 in a certain state 𝑠 compared to the aver-
age action in that state under the current policy. Intuitively,
the advantage function measures the relative quality of a
certain action in a given state. The advantage function is
generally defined as the difference between the action-
value function 𝑄గሺ𝑠,𝑎ሻ and the state-value function 𝑉ሺ𝑠ሻ:

𝐴ሺ𝑠,𝑎ሻ ൌ 𝑄గሺ𝑠,𝑎ሻ െ 𝑉గሺ𝑠ሻ

In the case of Advantage Actor-Critic, the advantage
function 𝐴ሺ𝑠,𝑎ሻ is used in place of the full action-value
function 𝑄ሺ𝑠,𝑎ሻ in the policy gradient update rule.

2.2 PROXIMAL POLICY OPTIMIZATION

Proximal Policy Optimization (PPO) is a type of pol-
icy gradient method for reinforcement learning. It opti-
mizes the policy by maximizing an objective function that
includes a clipped surrogate objective to control the policy
update size. This objective function is as follows [10]:

𝐿ሺ𝜃ሻ ൌ 𝐸௧ ሾ 𝑚𝑖𝑛ሺ𝜌௧ሺ𝜃ሻ𝐴௧, 𝑐𝑙𝑖𝑝ሺ𝜌௧ሺ𝜃ሻ, 1 െ 𝜀, 1
൅ 𝜀ሻ𝐴௧ሻ ሿ

where 𝜌௧ሺ𝜃ሻ ൌ
గഇ൫𝑎௧ห𝑠௧൯
గഇ೚೗೏ሺ௔೟|௦೟ሻ

 is the probability ratio of

the old and new policy for the update, 𝐴௧ is the advantage
function at timestep 𝑡 and the 𝑐𝑙𝑖𝑝 function chooses 𝜌௧ሺ𝜃ሻ
if it is between 1 െ 𝜀 and 1 ൅ 𝜀 and either of them if 𝜌௧ሺ𝜃ሻ
is bigger or smaller (𝜀 ൐ 0).

2.3 DEEP DETERMINISTIC POLICY GRADIENT

Deep Deterministic Policy Gradient (DDPG) is a
model-free, off-policy, actor-critic algorithm that uses deep
function approximators to learn policies in continuous ac-
tion spaces. In DDPG, the actor policy function and the
critic action-value function are updated according to the
following rules [11]:

𝜃గ ← 𝜃గ ൅ 𝛼 𝛻ఏഏ 𝑄ሺ𝑠,𝑎|𝜃ொሻ|𝑠 ൌ 𝑆௧ ,𝑎 ൌ 𝜋ሺ𝑆௧ሻ

𝜃ொ ← 𝜃ொ ൅ 𝛼 𝛻ఏೂ ሺ𝑟 ൅ 𝛾𝑄ሺ𝑠′,𝜋ሺ𝑠′ሻ|𝜃ொሻ
െ 𝑄ሺ𝑠,𝑎|𝜃ொሻሻ^2

DOI: 10.2195/lj_proc_wesselhoeft_en_202310_01
URN: urn:nbn:de:0009-14-58257

© 2023 Logistics Journal: Proceedings – ISSN 2192-9084 Page 3
Article is protected by German copyright law

where 𝜃గ and 𝜃ொ (𝛻ఏഏ the gradient with respect to the
parameters) are the policy parameters and the action-value
parameters, respectively, and 𝜋ሺ𝑠ሻ is the policy function.

3 RELATED WORK

Reinforcement learning (RL) based control ap-
proaches present a promising direction in robotics due to
their inherent capacity to solve complex tasks. A body of
evidence demonstrating the potential of these algorithms
has been growing in the recent literature. [13] for instance,
explored the implementation of deep RL for drone naviga-
tion tasks using sensor data, yielding insightful outcomes
and further highlighting the capabilities of these algo-
rithms. In the domain of multi-agent pathfinding (MAPF),
RL-based algorithms have begun to show noteworthy re-
sults in comparison to traditional state-of-the-art ap-
proaches. Established path planning algorithms such as
Conflict-Based Search (CBS) [14] and Reciprocal n-Body
Collision Avoidance (ORCA) [15] have seen competition
from more recent approaches like Transformer-based Imi-
tative Reinforcement Learning (TIRL) [16]. Several other
RL-based approaches, like Distributed Heuristic Multi-
Agent Path Finding with Communication (DHC) [17],
Learning Selective Communication for Multi-Agent Path
Finding (DCC) [18], and Pathfinding via Reinforcement
and Imitation Multi-Agent Learning (PRIMAL and
PRIMAL 2) [5, 6], have demonstrated similar successes
when compared to aforementioned state of the art algo-
rithms. Two key features have been identified among these
RL-based approaches, which offer a high potential for con-
trolling fleets of autonomous mobile robots (AMR). The
first feature is decentralization (when agents are controlled
decentralized to reduce computational effort but have a
communication mechanism to ensure successful fleet be-
haviour), which is becoming increasingly recognized as an
efficient strategy for controlling fleets of AMR [8]. [8] note
that such decentralized control mechanisms allow for im-
proved scalability and adaptability, particularly critical in
dynamic environments like logistics. The second feature
these algorithms have in common is that they are discrete,
hence primarily applied in graph-based structures or simi-
lar frameworks. While this structure simplifies the problem
space and allows for certain computational efficiencies, it
imposes a limitation on the flexibility of the algorithm [19].
This restriction is potentially consequential in real-world
scenarios that often require a high degree of adaptability
and will therefore harm especially the flexibility of the al-
gorithm which is needed for high dynamic environments
like logistics or production.

Given the identified gaps and potentials, this paper takes a
step forward by exploring the application of continuous RL
approaches for single-agent robot control. The aim is to es-
tablish an optimized basis for a decentralized and continu-
ous RL-based control system for AMR fleets in logistics
scenarios. By comparing these continuous RL algorithms

in a common environment, we seek to contribute valuable
insights towards achieving more efficient and flexible
AMR fleet management.

4 IMPLEMENTATION

The present work follows a systematic approach to
evaluate the performance of reinforcement learning (RL)
algorithms in a warehouse navigation task using an auton-
omous mobile robot. The fundamental components of the
employed methodology are the simulated environment, a
customized control interface for the robot, and the RL al-
gorithms. For the simulation part NVIDIA Isaac Sim and
Gym are used, due to their comprehensive capabilities and
extensive reinforcement learning support.

Environment Setup

Incorporating a simulated environment facilitates the

isolation and manipulation of task-specific variables in a
controlled manner, thus allowing for a more focused study.
Utilizing the NVIDIA Isaac Sim, a robotics simulator of-
fering highly realistic physics and exceptional rendering fi-
delity, the warehouse environment's nuances could be sim-
ulated effectively. Integration with NVIDIA Isaac Gym, a
toolkit designed specifically for the development and com-
parison of reinforcement learning algorithms, allowed for a
comprehensive exploration of algorithmic performance in
the given task.

The warehouse environment was established by im-

porting a Universal Scene Description Format (USD)
model of the TurtleBot3 robot into the Isaac Sim environ-
ment, equipped with a 360-degree rotating Lidar sensor.
The environment therefore is a small warehouse consisting
out of 4 walls and two large racks with pallets, cartons and
other stationary objects. As a goal a small cube has been
integrated for the turtlebot3 agent to reach.

Figure 1 Simulated Turtlebot3 in Nvidia Isaac Sim environment
equipped with a 360-degree Lidar

Control Mechanism Implementation

The control mechanism acts as the interface between

the RL algorithms and the simulated environment, allowing

DOI: 10.2195/lj_proc_wesselhoeft_en_202310_01
URN: urn:nbn:de:0009-14-58257

© 2023 Logistics Journal: Proceedings – ISSN 2192-9084 Page 4
Article is protected by German copyright law

commands to be translated into specific robot actions. This
involved in-depth consideration of the robot's physical pa-
rameters and constraints, ensuring accurate and feasible ex-
ecution of the actions recommended by the RL algorithms.
To maneuver the Turtlebot3, a library from the Omniverse
Isaac Core extension was utilized. This library features a
wheeled robot interface paired with a differential control-
ler, designed to translate specified angular and linear veloc-
ities into actuation signals for the robot's wheels, enabling
precise navigation within the environment.

Figure 2 Overview of the experimental setup

Algorithm Implementation and Training

The RL algorithms, PPO, DDPG and A2C were

sourced from the Stable Baselines 3 library [20]. Stable
Baselines 3 offers Python implementations of state-of-the-
art reinforcement learning algorithms, ensuring consistent
access to the latest algorithmic advancements.

Each algorithm was manipulated to the specific require-
ments of the warehouse navigation task. This involved
modification of the action- and observation-spaces of the
algorithms. Actions were formulated within a continuous
interval [0, 1] and subsequently scaled by the robot's max-
imum linear and angular velocities. The observation space
encompassed the robot's current positional coordinates,
goal coordinates, angular and linear velocities, and the
proximate distance to the goal. This observational data was
further enriched with readings from a 360-degree LiDAR
sensor. However, due to the increased dimensionality in-
troduced by the LiDAR data, only every fourth ray was in-
corporated into the algorithm's observational input. Subse-
quent to the initial setup, the algorithms were trained on an
NVIDIA RTX Titan graphics card, undergoing a total of 5
million training steps each.

Hyperparameter Tuning and Reward Optimization

Following initial training, a rigorous hyperparameter
tuning phase was conducted. This process involved adjust-
ing the algorithms' basic hyperparameters like the learning
rate or the discount factor to enhance the learning process's
efficiency and the resulting performance. The neural net-
works for each algorithm were constructed with uniform
sizes to enhance comparability between them and to limit
parameter tuning options, ensuring the scope of this work
was maintained.

Parallel to the hyperparameter tuning, the reward

structure of the environment was refined to maximize the
agent's goal-oriented learning. The design of the reward
structure is crucial in reinforcement learning, as it defines
the signals based on which the agent learns its policy. To
tackle the reward-sparseness (only achievements for the ro-
bot are picking the object) of the environment the reward-
function was separated into four parts, a part that measures
the difference in distance to the target regarding the last up-
date (Δௗ ൌ 𝑑௕௘௙௢௥௘ െ 𝑑௡௢௪), a term that rewards close

distances to the target (𝛼 ∗
ଵ

ଵାௗ೙೚ೢ
), where 𝛼 ∈ ሾ0,1ሿ scales

the term with the distance update. Additionally, a weighted
translational distance, denoted as 𝑑௧௥௔௡௦, is incorporated
into the reward function to ensure that the TurtleBot3's field
of view aligns with its target objective. This term is scaled
by a factor 𝛽 ∈ ሾ0,1ሿ, which harmonizes the magnitude of
this component with the other elements of the reward struc-
ture. In the end a case is added which leads to certain bo-
nus-rewards, which brings the reward-function down to the
following:

𝑅ሺ𝑥ሻ ൌ

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧ Δௗ ൅ 𝛼 ቀ

ଵ

ଵାௗ೙೚ೢ
ቁ െ 𝑑௧௥௔௡௦ ൅ 3 𝑖𝑓 𝑑௡௢௪ ൏ 𝜏ଵ

 Δௗ ൅ 𝛼 ቀ
ଵ

ଵାௗ೙೚ೢ
ቁ െ 𝑑௧௥௔௡௦ ൅ 25 𝑖𝑓 𝑑௡௢௪ ൏ 𝜏ଶ

Δௗ ൅ 𝛼 ቀ
ଵ

ଵାௗ೙೚ೢ
ቁ െ 𝑑௧௥௔௡௦ െ 15 𝑖𝑓 𝑑௡௢௪ ൐ 𝜏ଷ

Δௗ ൅ 𝛼 ቀ
ଵ

ଵାௗ೙೚ೢ
ቁ െ 𝑑௧௥௔௡௦ െ 20 𝑖𝑓 𝑒𝑝𝑖𝑠 ൐ 𝜏ସ

Δௗ ൅ 𝛼 ቀ
ଵ

ଵାௗ೙೚ೢ
ቁ െ 𝑑௧௥௔௡௦ 𝑒𝑙𝑠𝑒

.

In this case 𝜏ଵ, 𝜏ଶ and 𝜏ଷ are thresholds measuring if the
algorithm reached a curtain milestone the first time (or in
the case of 𝜏ଷ if the algorithm is to far away to the target).
In the fourth case 𝑒𝑝𝑖𝑠 ൐ 𝜏ସ signifies that the algorithm has
exceeded the maximum predefined episode length.

5 RESULTS

 In this section the capability, to control a turtlebot3 in
a logistic environment, for every algorithm will be pre-
sented. The performance metrics focused on four essential
areas: mean episode length, mean reward per episode, suc-
cess rate and the training time.

In analyzing the mean reward and episode lengths, the A2C
algorithm demonstrated superior performance by achieving
the highest mean reward at -12.2, while DDPG has the
shortest mean episode length at 232 (seemingly exploiting

DOI: 10.2195/lj_proc_wesselhoeft_en_202310_01
URN: urn:nbn:de:0009-14-58257

© 2023 Logistics Journal: Proceedings – ISSN 2192-9084 Page 5
Article is protected by German copyright law

the reward structure, the agent appears to strategically opt
for actions that increase the distance between itself and the
goal, as these actions incur a less severe penalty of -15 com-
pared to potentially larger negative rewards from other
non-successful steps). Conversely, A2C exhibited a com-
mendable episode length of 238, making it the second
shortest, while DDPG is the runner up in case of mean re-
ward with -12.7. The PPO algorithm is a distant last with a
mean reward of -14 and a mean episode length of 357. The
initial superior performance of the agent suggests one of
two possibilities: either the algorithm is not sufficiently ro-
bust for task completion, or it is currently in an exploratory
phase that may require a significantly larger number of
training steps for convergence towards optimal behavior.
The respective illustrations for PPO, DDPG, and A2C can
be found in Figure 3, Figure 4, and Figure 5.

Figure 3 Mean episode-length and reward of the PPO algorithm

From a training efficiency standpoint, the A2C algorithm
was quickest, wrapping up its training in a mere 40.63
hours. The PPO algorithm took a slightly longer duration,
finishing its training in 40.68 hours, and DDPG was the
most time-consuming, necessitating 49.8 hours for train-
ing completion.

Figure 4 Mean episode-length and reward of the DDPG algo-
rithm

A significant measure of performance, the success rate,
showed that A2C outperformed the other two with a nota-
ble success rate of 64 percent. This was closely followed
by the DDPG algorithm which achieved 56 percent, while
PPO lagged slightly behind at 42 percent. These detailed
success rates and the training time are further tabulated in
Table 1 for clarity.

Figure 5 Mean episode-length and reward of the A2C algorithm

The A2C algorithm emerged as the most proficient, boast-
ing the highest success rate among its counterparts. More-
over, its training efficiency was evident as it completed its
learning in the shortest duration (almost identical to the
training duration of the PPO).

Table 1 Success rates of the PPO, DDPG and A2C algorithm in
reaching the goal in the logistic scenario

Algorithm A2C DDPG PPO

Success Rate 0.64 0.56 0.42

Time to train 40,63 h 49,80 h 40,68 h

While the DDPG secured a commendable mean episode
lengths, its overall performance ranked it second, just after
A2C. PPO lagged in all performance metrics, positioning
it behind both A2C and DDPG. In summary, the A2C al-
gorithm demonstrated superior performance in the given
path planning logistics scenario, followed by DDPG,
while PPO took a distant third place. It's imperative to note
that the selection of an algorithm should consider specific
requirements and the nature of tasks, but for this scenario,
A2C has shown the best performance. It should be noted
that further refinement is necessary to enhance the algo-
rithm's performance in the given environment. Specifi-
cally, additional hyperparameter tuning, extended training
durations, and optimization of the reward structure are req-
uisite steps for achieving a higher success rate.

6 CONCLUSION

In the dawn of Industry 4.0, the increasing demand for
autonomous mobile robots (AMR) in logistics, propelled
by the quest for efficiency and a reduction in human error,
has brought to the fore the intricacies of controlling expan-
sive fleets of such robots. Navigating the dynamic terrains
of logistics environments, these robots require agile, adapt-
able, and computational efficient control algorithms. Rein-

DOI: 10.2195/lj_proc_wesselhoeft_en_202310_01
URN: urn:nbn:de:0009-14-58257

© 2023 Logistics Journal: Proceedings – ISSN 2192-9084 Page 6
Article is protected by German copyright law

forcement learning (RL), especially in its decentralized in-
carnation, emerges as an attractive solution, bringing with
it the promise of optimal strategies within unpredictable,
evolving contexts.

The survey of literature reflected a growing consensus
on the capabilities of RL in robot control, from drone nav-
igation to multi-agent pathfinding (MAPF). Pioneers in this
field have moved from traditional path-planning mecha-
nisms to RL-based ones, which demonstrate significant
promise in comparison. Among these, decentralization and
a focus on discrete structures stood out as two discernible
trends. The former offers scalability and adaptability, in-
valuable in the changeable arenas of logistics, while the lat-
ter, despite its computational advantages, imposes limits on
the flexibility of the RL algorithms. In light of this, this
work journeyed into the realms of continuous RL algo-
rithms for single-agent robot control as a needed basis for
decentralized fleet controls. The objective was clear: to lay
the foundation for a system that is both decentralized and
continuous, addressing the previously identified limitations
and leveraging the strengths of RL. Our analysis of the
A2C, DDPG, and PPO algorithms for controlling a Turtle-
bot3 in a logistics scenario produced interesting findings.
In our exploration of continuous RL for single-agent robot
control, we comparatively analyzed the A2C, DDPG, and
PPO algorithms for the Turtlebot3 within a logistics con-
text. A2C notably outperformed the others in terms of suc-
cess rate and training time. DDPG followed closely in
terms of rewards and episode lengths, while PPO's strength
lay primarily in its computation time. Future avenues for
research should delve deeper into hyperparameter tuning
and reward structures that further optimize the Turtlebot3's
success rate. Additionally, extending training over more
timesteps and analyzing data efficiency will provide a more
comprehensive understanding of these algorithms' poten-
tial.

In summary, our study emphasizes the promise of continu-
ous RL algorithms, especially A2C, in managing AMRs in
logistics. As the logistics industry continues its rapid trans-
formation, the findings here offer valuable insights for the
next generation of AMR fleet control solutions.

LITERATURE

[1] International Federation of Robotics. World Robot-
ics Report 2020; International Federation of Robot-
ics: 2020.

[2] International Federation of Robotics. Robot Sales
Rise Again; International Federation of Robotics:
2021.

[3] Vinyals, O.; Babuschkin, I.; Czarnecki, W.M.;
Mathieu, M.; Dudzik, A.; Chung, J.; Choi, D.H.;
Powell, R.; Ewalds, T.; Georgiev, P.; et al.
Grandmaster level in StarCraft II using multi-agent
reinforcement learning. Nature 2019, 575, 350–354.

[4] Akkaya, I.; Andrychowicz, M.; Chociej, M.; Litwin,
M.; McGrew, B.; Petron, A.; Paino, A.; Plappert, M.;
Powell, G.; Ribas, R.; et al. Solving Rubik’s Cube
with a robot hand. arXiv 2019, arXiv:1910.07113.

[5] Sartoretti, G.; Kerr, J.; Shi, Y.; Wagner, G.; Kumar,
T.K.S.; Koenig, S.; Choset, H. PRIMAL: Pathfinding
via Reinforcement and Imitation Multi-Agent Learn-
ing. IEEE Robot. Autom. Lett. 2019, 4, 2378–2385.
https://doi.org/10.1109/LRA.2019.2903261.

[6] Damani, M.; Luo, Z.; Wenzel, E.; Sartoretti, G.
PRIMAL2: Pathfinding Via Reinforcement and Imi-
tation Multi-Agent Learning Lifelong. IEEE Robot.
Autom. Lett. 2021, 6, 2666–267

[7] Golden, W. and Powell, P., 2000. Towards a defini-
tion of flexibility: in search of the Holy Grail?.
Omega, 28(4), pp.373-384.

[8] Wesselhöft, M., Hinckeldeyn, J. and Kreutzfeldt, J.,
2022. Controlling fleets of autonomous mobile ro-
bots with reinforcement learning: a brief survey. Ro-
botics, 11(5), p.85.

[9] Mehta, D., 2020. State-of-the-art reinforcement
learning algorithms. International Journal of Engi-
neering Research and Technology, 8, pp.717-722.

[10] Schulman, J., Wolski, F., Dhariwal, P., Radford, A.
and Klimov, O., 2017. Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347.

[11] Silver, D., Lever, G., Heess, N., Degris, T., Wierstra,
D. and Riedmiller, M., 2014, January. Deterministic
policy gradient algorithms. In International confer-
ence on machine learning (pp. 387-395). Pmlr.

[12] Sutton, R.S. and Barto, A.G., 2018. Reinforcement
learning: An introduction. MIT press.

[13] Hodge, V.J., Hawkins, R. and Alexander, R., 2021.
Deep reinforcement learning for drone navigation us-
ing sensor data. Neural Computing and Applications,
33, pp.2015-2033.

[14] M. Barer, G. Sharon, R. Stern, and A. Felner,
“Suboptimal variants of the conflict-based search al-
gorithm for the multi-agent pathfinding problem,” in
European Conference on Artificial Intelligence, pp.
961–962, 2014.

DOI: 10.2195/lj_proc_wesselhoeft_en_202310_01
URN: urn:nbn:de:0009-14-58257

© 2023 Logistics Journal: Proceedings – ISSN 2192-9084 Page 7
Article is protected by German copyright law

[15] J. v. d. Berg, S. J. Guy, M. Lin, and D. Manocha,
“Reciprocal n-body collision avoidance,” in Robot-
ics research, pp. 3–19. Springer, 2011.

[16] Chen, L., Wang, Y., Miao, Z., Mo, Y., Feng, M.,
Zhou, Z. and Wang, H., 2023. Transformer-based
Imitative Reinforcement Learning for Multi-Robot
Path Planning. IEEE Transactions on Industrial In-
formatics.

[17] Ma, Z., Luo, Y. and Ma, H., 2021, May. Distributed
heuristic multi-agent path finding with communica-
tion. In 2021 IEEE International Conference on Ro-
botics and Automation (ICRA) (pp. 8699-8705).
IEEE.

[18] Ma, Z., Luo, Y. and Pan, J., 2021. Learning selective
communication for multi-agent path finding. IEEE
Robotics and Automation Letters, 7(2), pp.1455-
1462.

[19] Eliasmith, C. and Furlong, P.M., 2022, January. Con-
tinuous then discrete: A recommendation for build-
ing robotic brains. In Conference on Robot Learn-
ing (pp. 1758-1763). PMLR.

[20] Antonin Raffin and Ashley Hill and Adam Gleave
and Anssi Kanervisto and Maximilian Ernestus and
Noah Dormann, 2021. Stable-Baselines3: Reliable
Reinforcement Learning Implementations. Journal
of Machine Learning Research, 22, (pp1-8)

Mike Wesselhöft, M.Sc., Research Assistant at the Institute
of Technical Logistics, Technical University Hamburg.
Mike Wesselhöft was born 1993 in Henstedt-Ulzburg,
Germany. Between 2013 and 2019 he studied Mathemat-
ics at the University of Hamburg.

Address: Institut für Technische Logistik, Technische
Universität Hamburg, Theodor-Yorck-Straße 8, 21073
Hamburg, Germany, E-Mail: mike.wesselhoeft@tuhh.de

