
DOI: 10.2195/lj_Proc_kaiser_en_202112_01
URN: urn:nbn:de:0009-14-54219

© 2021 Logistics Journal: Proceedings – ISSN 2192-9084 Page 1
Article is protected by German copyright law

Generating Highly Constrained Warehouse Layouts
Using Answer Set Programming

Generierung stark eingeschränkter Lagerlayouts
mittels Antwortmengenprogrammierung

Pascal Kaiser1
Andre Thevapalan2

Christopher Reining1
Gabriele Kern-Isberner2

Michael ten Hompel1

1Chair of Materials Handling and Warehousing

Faculty of Mechanical Engineering
TU Dortmund University

2Chair of Logic in Computer Science - Information Engineering

Department of Computer Science
TU Dortmund University

enerating highly constrained warehouse layouts is a
challenging task for layout planners. Those experts

create feasible layouts analytically based on their
knowledge and experience. The presented paper proposes
an AI-based approach to generate feasible warehouse lay-
outs automatically by using answer set programming.
The developed implementation is able to generate all fea-
sible combinations for positioning racks inside a given
layout while satisfying all the applicable constraints. This
supports layout planners by generating solutions for
highly constrained problems.

 [Keywords: warehousing, layout planning, picking, answer set
programming, logic programming]

ie Erzeugung gültiger Lösungen für stark einge-
schränkte Lagerlayouts ist eine Herausforderung

für Layoutplaner. Diese Experten generieren zulässige
Layouts bisher analytisch basierend auf ihrer Erfahrung
und ihrem Wissen. Der vorliegende Artikel stellt einen
KI-basierten Ansatz vor, um zulässige Layouts automa-
tisch mithilfe der Antwortmengenprogrammierung zu
erzeugen. Das vorgestellte Framework ist in der Lage, alle
zulässigen Lösungen zu generieren, um eine gewisse An-
zahl an Regalen innerhalb des Layouts zu positionieren.
Dadurch werden die Layoutplaner bei der Lösung stark
eingeschränkter Probleme unterstützt.

[Schlüsselwörter: Layoutplanung, Kommissionierlager, Ant-
wortmengenprogrammierung, Logische Programmierung]

1 INTRODUCTION

Warehouse layout planning is considered a poorly
structured decision problem [Sch18]. There are systematic
planning approaches to handle these problems, e.g., like
[Sch18], but so far, the automation of holistic warehouse
layout planning is considered hardly possible [Gud10].
Usually it is executed by interdisciplinary teams whose ef-
ficiency suffers from unclear and conflicting goals. Thus,
planners heavily rely on their experience to design ware-
houses [WS14]. Drafts of feasible layouts are created ana-
lytically by experts.

For highly constrained warehouses, it is even more dif-
ficult to find feasible layout options. This occurs for exam-
ple in brownfield projects with given building restrictions
and other constraints (e.g., existing material flow con-
straints). Planning such highly constrained warehouse lay-
outs can challenge even the experts to an extent where no
good solutions are found. A reason for that can be the sub-
jective influence of the expert that is based on their experi-
ence and new layout options might not even be considered.

Those by experts generated layouts can be assessed
and enhanced by IT-supported methods [Gud10]. Unfortu-
nately, they only consider subproblems of the overarching
goal and can hardly be deployed without excessive domain
knowledge [SMM17]. Also, they are often based on ideal-
ized assumptions, such as aisles of the same length, rectan-
gular layouts, the absence of traffic conflicts, and so forth.
As a result, warehouse planning is a tedious task that com-
bines domain knowledge by experts and restricted applica-
ble methods.

G

D

DOI: 10.2195/lj_Proc_kaiser_en_202112_01
URN: urn:nbn:de:0009-14-54219

© 2021 Logistics Journal: Proceedings – ISSN 2192-9084 Page 2
Article is protected by German copyright law

Answer set programming (ASP) is an approach for de-
clarative problem solving, suited for solving highly com-
plex problems that are closely connected to domain
knowledge [GKKS12]. Logic programs enable the model-
ing of those problems. A core advantage of ASP is that a
user does not have to design the solving process of a prob-
lem, it is simply enough to describe the problem. Based on
the problem description, the possible solutions for the prob-
lems are generated by a solver, a form of artificial intelli-
gence (AI).

The goal of this paper is to show that possible ware-
house layouts can be generated with an AI-based approach
using ASP. There, the expert knowledge has to be formal-
ized in a logic program once. After the formalization of the
knowledge, the implementation is capable of generating
every feasible layout for all valid building restrictions and
constraints. To demonstrate the developed implementation,
we will create a layout for a manual order picking process
based on given building restrictions and constraints.

The remainder of this paper is structured as follows.
Section 2 gives an introduction into extended logic pro-
grams and warehouse planning. In Section 3, the developed
implementation is illustrated and key components are ex-
plained. Then the program is used to generate a possible
layout for a given problem instance (building restrictions,
number of racks, base position, etc.). Based on the imple-
mentation and the application a discussion about the results
takes place in Section 5. The final section of this paper will
give an outlook on future work.

2 PRELIMINARIES

This section gives a short introduction into extended
logic programs and layout planning.

2.1 EXTENDED LOGIC PROGRAMS

In ASP, a problem is modelled in the syntax of logic
programs [GKKS12]. In the following, we look at nondis-
junctive extended logic programs (ELPs) [GL91]. An ELP
is a finite set of rules over a set C of constants, a set P of
predicates and a set V of variables. Elements of C∪V are
called terms1. An atom has the form

𝑝𝑝(𝑡𝑡1, … , 𝑡𝑡𝑛𝑛)

with a predicate 𝑝𝑝 of arity 𝑛𝑛 and terms 𝑡𝑡1, … , 𝑡𝑡𝑛𝑛. An atom
will be called grounded if all terms are constants. A literal
L is either an atom A (positive literal) or a negated atom ¬A
(negative literal). For a literal L, the complementary literal
𝐿𝐿� is ¬A if L = A and A otherwise. For a set X of literals, 𝑋𝑋�
= {𝐿𝐿� | 𝐿𝐿 ∈ 𝑋𝑋} is the set of corresponding complementary

1 Modern ASP systems also allow function symbols but we will
omit their definition due to lack of space.

literals. A set of literals is inconsistent if it contains com-
plementary literals. A default-negated literal L is called a
default literal, and is written as not L. A rule r is of the form

L0 :- L1, … , Lm, not Lm+1, … , not Ln.

with literals L0, . . . , Ln and 0 ≤ m ≤ n. The literal L0 is the
head of r, denoted by H(r) and {L1, . . . Lm, not Lm+1, . . .,
not Ln} is the body of r, denoted by B(r). Furthermore, we
will call B+(r) = {L1, . . . , Lm} the set of positive body liter-
als and B−(r) = {Lm+1, . . . , Ln} the set of negative body
literals in r. A rule r with 𝐵𝐵(𝑟𝑟) = ∅ is called a fact, and if
𝐻𝐻(𝑟𝑟) = ∅, rule r is called a constraint. A rule r is positive
if it does not contain any default literals, i.e., 𝐵𝐵−(𝑟𝑟) = ∅.
An extended logic program is a positive logic program if it
only comprises positive rules.

Given an ELP 𝒫𝒫, the herbrand universe 𝒰𝒰𝒫𝒫 is the set
of all constants 𝒸𝒸 ∈ C occurring in 𝒫𝒫. A grounded rule
𝑔𝑔𝑟𝑟𝑛𝑛𝑔𝑔(𝑟𝑟) of a rule 𝑟𝑟 ∈ 𝒫𝒫 is obtained by replacing every
variable of r by a constant 𝒸𝒸 ∈ 𝒰𝒰𝒫𝒫 . The grounded pro-
gram 𝑔𝑔𝑟𝑟𝑛𝑛𝑔𝑔(𝒫𝒫) of 𝒫𝒫 is then defined as

𝑔𝑔𝑟𝑟𝑛𝑛𝑔𝑔(𝒫𝒫) = �𝑔𝑔𝑟𝑟𝑛𝑛𝑔𝑔(𝑟𝑟)
𝑟𝑟∈𝒫𝒫

.

Naturally, for a variable-free program 𝒫𝒫, it holds that 𝒫𝒫 =
𝑔𝑔𝑟𝑟𝑛𝑛𝑔𝑔(𝒫𝒫). The herbrand literal base ℋℬ𝒫𝒫 of 𝒫𝒫 is the set
of all grounded literals with predicate symbols p ∈ P occur-
ring in 𝒫𝒫 and constants 𝒸𝒸 ∈ 𝒰𝒰𝒫𝒫. An interpretation ℐ ⊆
 ℋℬ𝒫𝒫 is a consistent set of literals. Given a positive pro-
gram 𝒫𝒫, an interpretation ℐ ⊆ ℋℬ𝒫𝒫 is a model of 𝒫𝒫 if for
every rule 𝑟𝑟 ∈ 𝒫𝒫 the following holds: 𝐻𝐻(𝑟𝑟) ∈ ℐ whenever
B+(r) ⊆ ℐ and B−(r) ∩ ℐ = ∅. An interpretation ℐ ⊆ ℋℬ𝒫𝒫
is an answer set of a positive program 𝒫𝒫 if ℐ is a subset-
minimal model of 𝒫𝒫. Answer sets of a program with default
negation are determined by its reduct. Given an extended
logic program 𝒫𝒫 and an interpretation ℐ ⊆ ℋℬ𝒫𝒫 , the reduct
𝒫𝒫ℐ of 𝒫𝒫 relative to ℐ is defined by

𝒫𝒫ℐ = {𝐻𝐻(𝑟𝑟) :- 𝐵𝐵+(𝑟𝑟). | 𝑟𝑟 ∈ 𝒫𝒫,𝐵𝐵−(𝑟𝑟) ∩ ℐ = ∅}.

An interpretation ℐ ⊆ ℋℬ𝒫𝒫 is an answer set of an extended
logic program 𝒫𝒫 if and only if ℐ is an answer set of its re-
duct 𝒫𝒫ℐ. The set of all answer sets of a program 𝒫𝒫 will be
denoted by 𝐴𝐴𝐴𝐴(𝒫𝒫), and 𝒫𝒫 is called consistent if and only if
𝐴𝐴𝐴𝐴(𝒫𝒫) ≠ ∅. We say a literal L is derivable in an ELP 𝒫𝒫 if
and only if 𝐿𝐿 ∈ ⋃𝐴𝐴𝐴𝐴(𝒫𝒫).

The grounding of ELPs is executed by ASP grounder
(e.g., gringo) and the answer sets are then computed by
ASP solvers (e.g., clasp). The implementation described in
this paper is implemented with the ASP system clingo2
which uses both clasp and gringo. One major advantage in

2 https://potassco.org/clingo/

DOI: 10.2195/lj_Proc_kaiser_en_202112_01
URN: urn:nbn:de:0009-14-54219

© 2021 Logistics Journal: Proceedings – ISSN 2192-9084 Page 3
Article is protected by German copyright law

using clingo is the availability of several language exten-
sions. Furthermore, clingo offers the integration of external
methods (either in the programming language Python3 or
Lua4) into the solving process. Examples of ASP rules for
the logistics domain and using the language extensions in
clingo are given in Section 3.

2.2 LAYOUT PLANNING

Designing warehouses is the strategical task of deter-
mining their size, processes, technologies, composition and
organization in accordance to given requirements. Unfor-
tunately, the task is a poorly structured decision problem
that suffers from a wide variety of interdependencies. Thus,
warehouse designers are highly valuable experts. Formal-
izing their knowledge and experience for creating com-
puter-aided tools is expected to facilitate warehouse plan-
ning.

Several goals can be pursued through warehouse plan-
ning, e.g., minimizing transport intensity, minimizing in-
ventory, maximizing storage capacity or maximizing area
or space utilization. Ultimately all these goals aim at reduc-
ing costs [AF07, Kov17, NMWW18].

The layout planning is one part of the warehouse de-
sign. It focuses on the arrangement of resources and func-
tional areas [AF07]. The layout generation is a critical chal-
lenge within this task. Layouts are dependent on several
goals and constraints. Thus, layout planning is often char-
acterized as a special optimization problem, because the
number of alternatives is often infinite. Therefore generat-
ing all layout alternatives is impossible [Kov21]. Currently
experts rely on their experience when creating possible lay-
outs for further consideration during the planning process
[WS14]. Kovács concludes in [Kov21]: “a uniform and
standard procedure for the warehouse layout design is not
available either in practice or in literature.”

In order to receive feasible layout alternatives, con-
straints have to be obeyed. The following list contains some
of the more common constraints in the layout design
[Kov21, NMWW18]:

• Architectural constraints (e.g., position of walls,
gates, supporting pillars)

• Legal requirements (e.g., emergency exits and fire
protection)

• Technical requirements

• Material flow requirements

• Financial requirements

3 https://www.python.org/

A warehouse consists of different processes. The most
important processes are receiving, put-away, storing, pick-
ing, sorting and packing. In a warehouse layout, functional
areas are loosely connected to the aforementioned pro-
cesses. Some processes imply their own functional area
such as receiving, sorting and shipping. Others share a
common functional area such as put-away, storing and
picking.

Order picking is the process of retrieving items from a
warehouse to satisfy customer orders. It is usually followed
by consolidation and packaging. In most cases, these labor-
intensive processes make up more than half of the total op-
erating expenses of a warehouse [dKLDR07, GGN15]. In
contrast to other warehouse functions, their level of auto-
mation is still relatively low. This is because it remains
challenging to imitate the cognitive and motor skills of hu-
mans by machines in an economic manner [GGN15].
While automated solutions imply standardized layouts, this
is not the case for manual order picking, making its layout
planning a challenging task.

An order picking system’s layout consists of at least
three basic elements. At the base, an empty collecting unit
is handed to the picker. This can be a small load carrier, a
pallet, a cart, etc. At the retrieval locations, the articles are
stored in a manner that allows for efficient picking. Articles
are usually stored in racks or on pallets, etc. [Man12].
When the picker completes an order line, the collecting unit
is handed over to the next process step at a drop-off point.
This may be the same location as the base, or a conveyor
belt, etc.

3 IMPLEMENTATION

The implementation described in this paper serves as
a general proof of concept. In the following, we will outline
some key aspects of the implementation w.r.t. layout plan-
ning. The base of the implementation is a logic program 𝒫𝒫
that contains the encoding of structural warehouse ele-
ments and the definition of dependencies and constraints
regarding their positioning.

3.1 OVERVIEW

The presented implementation constitutes a proof of
concept for a general framework to integrate answer set
programming into the workflow of warehouse planning.
An overview of such a framework is depicted in Figure 1.
The process workflow starts with the user who can enter
key instance values, e.g., the size of the warehouse, the
number of racks inside the warehouse, and their size. This
instance data is then added to the problem encoding which
contains the general facts and conditions that hold for the

4 https://www.lua.org/

DOI: 10.2195/lj_Proc_kaiser_en_202112_01
URN: urn:nbn:de:0009-14-54219

© 2021 Logistics Journal: Proceedings – ISSN 2192-9084 Page 4
Article is protected by German copyright law

intended warehouse layouts. The ASP solver computes the
answer sets of the logic program where each answer set
represents a preliminary layout based on the knowledge
base modelled in the logic program. Subsequently, a Py-
thon application filters out those layouts where certain ad-
ditional constraints are not met. The filtered layouts can
then be rendered as 2D graphics and displayed to the user.

Figure 1. Framework Overview

3.2 PROBLEM INSTANCE AND GENERAL ENCODING

In ASP, logic programs are often divided into the
problem encoding and the problem instance [GKKS12].
The problem encoding comprises those rules that describe
the general problem that has to be solved whereas the prob-
lem instance contains those rules that establish specific pa-
rameters. The problem instance can, thereby, be viewed as
the input data for the logic program that varies from case to
case.

r1: size_x(30). r2: size_y(20).
r3: coords_blocked(1,1). r4: coords_blocked(1, 2).
r5: racks_size(5). r6: racks_quantity(55).
r7: handover(cell_line(coords(30, 10), coords(30, 13))).

The storage area is represented by a grid structure compris-
ing x columns and y rows where a cell stands for a specific
position in the area and is accessible by its coordinates.
This kind of representation allows a coarse-grained but
flexible modeling of the available area. The size of the stor-
age area can be set by literals size_x and size_y. This kind
of representation offers high flexibility with respect to
scalability. Each cell has one of three states:

blocked A blocked cell is not accessible by definition, e.g.,
due to an additional wall, a pillar or other building ele-
ments.

occupied A cell is occupied if a structural element is placed
at this position, e.g., (part of) a rack.

idle A cell is idle if it is accessible but not occupied by a
structural element.

5 We omitted the corresponding rule for vertical cell lines due to
space restrictions.

Blocked cells can be determined by coords_blocked-
literals as exemplified with rules r3 and r4. Other mandatory
instance values are the rack size (r5), the amount of racks
that each layout has to contain (r6) and the position of the
handover (r7).

In the following, with a path C = {c1, ... , cn}, we mean
a finite sequence of cells such that cells ci , ci+1 (1 ≤ i < n)
are adjacent. A path C is a cell line if all cells in C are lo-
cated in either one row or one column of the grid. Two cell
lines C1, C2 are adjacent if for every cell c ∈ C1 there exists
a cell c′ ∈ C2 such that c, c′ are adjacent. The handover point
inside the storage is also represented by a cell line as shown
in r7. The cell_line-literal has two arguments which repre-
sent both ends of the cell line.

r8: distance_relevant(D) :- rack_size(D + 1).
r9: cell_line_fixed_length(C1, C2, D, h)
 :- C1 = coords(C1X, C1Y), C2 = coords(C2X, C2Y),
 cell(C1), cell(C2), C1X == C2X, |C1Y − C2Y | == D,

 distance_relevant(D), C1 <= C2.
r10: cell_line(C1, C2) :-
 cell_line_fixed_length(C1, C2,_,_).
r11: cell_in_cell_line(@getCellOfCellLine(C1, C2),

 cell_line(C1, C2)) :- cell_line(C1, C2).
r12: cell_line_blocked(C1, C2) :-
 cell_in_cell_line(C, cell_line(C1, C2)),
 cell_blocked(C).

Rules r8-r10 define the cell line literals. Rules like r8 serve
to gather the sizes the cell lines are supposed to have, in this
case, we only want to compute cell lines that have the same
length as the racks. If we do not restrict the size of the con-
sidered cell lines, the program would compute all possible
cell lines of all possible lengths (1 to x or y resp.) which in
our case is not necessary. Therefore, in this example we re-
strict the relevant cell lines to those that have the length of
a rack and the base. With rule r9, all horizontal cell lines in
the grid can be derived that have the relevant sizes5 . With
r10, we then get a cell_line-literal for every possible cell line
in the grid that have specified length(s).

Until now, it can only be derived whether single cells
are blocked due to the initial instance data. Rule r12 shows
how we can determine that a cell line is blocked. Intui-
tively, this rule determines that a cell line CL is blocked
whenever a blocked cell C is part of CL. Here, we use the
literal cell_in_cell_line to state which cells are contained in
a given cell line. The cell_in_cell_line-literals are obtained
by rule r11, using an external Python function @getCel-
lInCellLine that returns for a given cell line all contained
cells by processing the coordinates of the cell line.

DOI: 10.2195/lj_Proc_kaiser_en_202112_01
URN: urn:nbn:de:0009-14-54219

© 2021 Logistics Journal: Proceedings – ISSN 2192-9084 Page 5
Article is protected by German copyright law

Figure 2. Base Location

3.3 STRUCTURAL ELEMENTS

The implementation generates layouts where racks, a
base and a conveyor belt are placed in the storage area. We
focus on a limited number of conditions and constraints that
have to be considered when positioning each structural el-
ement.

r13: R{rack_position(cell_line(C1, C2))
 : cell_line_fixed_length(C1, C2, L, _),
 rack_size(L + 1), cell(C1), cell(C2), C1 < C2}R
 :- racks_quantity(R).

r14: :- rack_position(cell line(C1, C2)),
 cell_line_blocked(C1, C2).

r15: :- rack_position(CL), rack_position(CL2),
 cell_in_cell_line(C, CL), cell_in_cell_line(C, CL2),
 CL! = CL2.

Racks The positioning of the racks are represented by
rack_position-literals which have an argument cell_line.
The rack_position-literals in an answer set, therefore, tell
us where the racks are located in the corresponding layout.
Rule r13 defines how the rack_position-literals are derived.
Intuitively, with r13, every answer set of 𝒫𝒫 contains exactly
R different rack_position-literals. With
cell_line_fixed_length in B(r13), we furthermore specify the
positions a rack can have as we are only interested in cell
lines that have the size of the racks. Rules r14 and r15 illus-
trate how the positioning of the racks can be refined by ad-
ditional constraints. Rule r14 prevents that racks are posi-
tioned on top of blocked cells. By rules r15, answer sets with
overlapping racks are discarded. Here, the overlapping is
defined as two racks that share a common cell. Note, that
the order of the rules does not affect the answer sets and,
therefore, especially constraints can be added as needed.

Base and Conveyor Belt The base in our implementation
is a squared area of cells of size n (which can be prede-
fined), i.e., a sequence C of adjacent cell lines C where each
C and C itself have size n. The position of the base (see
Figure 2) depends on the position of the handover (r7),
among other things. The position of the handover point is
represented by a cell line located at a border of the ware-
house. Every layout will contain a conveyor belt. To keep
the implementation simple, we determine that the conveyor
belt is also a sequence of adjacent cell lines and that the
conveyor belt does not contain any curves.

Figure 3. Paths of Width 1, 2 and 3 Cells

3.4 REACHABILITY

In order to store and retrieve materials in a warehouse,
each storage compartment needs to be accessible. A rack
can be accessible from one side or from two sides, this de-
pends on the type and position of the rack. This means, to
get a valid layout from a logistics perspective, each rack
has to be accessible from at least one side. In the following,
with reachability, we will denote the property of a ware-
house layout that there is a path from the base to each rack.

Finding paths in graph-like structures is itself a com-
plex task [Dij59]. In layout generation based on a grid, the
problem of reachability is even more complex than stand-
ard pathfinding as we also have to ensure that based on the
scale of the grid, a path can have an individual path width.

Based on who (e.g., only persons, forklifts) is using the
path, a different path width is necessary. The concept of
path widths is illustrated by Figure 3 where paths with
widths ranging from one to three cells can be constructed.
Paths a, b and c constitute standard paths with the width of
one cell. Paths with a width of two cells can then be formed
by merging two “adjacent” paths. In this case the combina-
tion of either a and b or b and c are valid paths with a path
width of two cells. Analogously, a path width of three cells
can be achieved by combining all standard paths a, b and c
since each path is adjacent to at least one other path.

It is easy to see that by taking different possible path
widths into account, the complexity of computing paths in
logistics settings increases. Furthermore, logic programs
themselves do not directly support the utilization of heuris-
tics or brute-force methods as they only allow for a declar-
ative specification of constraints. However, since the an-
swer sets of a logic program represent all possible solutions
(those where reachability is satisfied and those where it is
not), testing for reachability can be extracted from the ac-
tual layout generation process. We therefore propose that
the logic program generates layouts without considering
reachability and that the resulting layouts are then filtered
by an additional external application which checks for
reachability in each layout. The subsequent filtering of im-
practical layouts w.r.t. reachability by an external applica-
tion has two advantages: extracting the reachability prob-
lem allows the usage of existing pathfinding algorithms

DOI: 10.2195/lj_Proc_kaiser_en_202112_01
URN: urn:nbn:de:0009-14-54219

© 2021 Logistics Journal: Proceedings – ISSN 2192-9084 Page 6
Article is protected by German copyright law

(e.g., A⋆ search algorithm [HNR68]), and by precomputing
all possible preliminary layouts by 𝒫𝒫, we now have a deci-
sion problem instead of search problem, meaning, instead
of computing all paths in a layout (as it would have been
the case if reachability was considered in the logic pro-
gram), we now only have to decide, whether a layout does
or does not satisfy reachability. Thus, the delegation of the
reachability computation to an external script is not more
complex than computing layouts that consider such con-
straints [KST93]. Rather, by certain improvements to the
used pathfinding algorithm, we claim that “normally” the
external filtering is way more efficient.

4 CASE STUDY

To illustrate the previous described implementation, a
small case study was conducted. Therefore, the building re-
strictions of a warehouse are given and the task is to posi-
tion the basic elements of a manual order picking system

Figure 4. Basic Layout Without Racks

inside. The warehouse has a length of 30m and a width of
20m with several restricted areas (see Figure 4). These ar-
eas can be occupied by walls or pillars for example. As
explained in Section 3.2, the logic program 𝒫𝒫 consists of
the problem instance and the problem encoding. The prob-
lem encoding consists of the basic knowledge of general
planning rules, such as the storage area is a grid. In the
problem instance, the use case specific information is en-
coded. In this case, the grid has 600 cells with 1x1m,
where 114 cells are occupied. Additionally, the handover
point to the next functional area is set (yellow squares).
The base has to be connected to this handover point
through the conveyor belt. The blocked cells are marked
with a black square in Figure 4.

The goal is to position a base (4x4m), if necessary the con-
veyor belts and 55 racks (1x5m) inside the basic layout. In
this case study, cells containing a rack consist of the rack
itself and the path in front of the rack.

Figure 5. 2D Layout With Racks

DOI: 10.2195/lj_Proc_kaiser_en_202112_01
URN: urn:nbn:de:0009-14-54219

© 2021 Logistics Journal: Proceedings – ISSN 2192-9084 Page 7
Article is protected by German copyright law

Figure 6. 3D Layout

The instance data has to be added as the problem in-
stance to the general problem encoding in order to calculate
all possible answer sets. In this case, the solver generated
all 12096 different answer sets in under 35 seconds. This
implies that in this use case, there are over 12000 possibil-
ities to position the racks inside the layout. Note that since
this paper aims at a proof of concept, the generated layouts
comprise all feasible solutions and not exclusively optimal
solutions.

After the solver calculated all answer sets, the imple-
mented framework (see Figure 1) can be used to refine a
layout, give a 2D layout preview and render a 3D model.
For this case, one feasible layout preview is shown in Fig-
ure 5.

For a better visualization of the result, the 2D layout
generated by the program can then be rendered as a 3D
model (see Figure 6). With this 3D model the warehouse
planner then can validate the generated layout by their ex-
pert knowledge.

5 CONCLUSION

This paper proposed an ASP-based approach to gener-
ate highly constrained warehouse layouts. As shown in the
case study, an implementation with ASP is able to generate
all layouts satisfying the constraints in an automated way.
Using ASP systems like clingo also allow the additional in-
corporation of modern programming languages like python
(e.g., see function @getCellInCellLine in Section 3.2).

Besides using the directly generated layouts, the an-
swer sets can also be used to validate manually generated
layouts by a layout planner or to add missing layouts. It
should also help to expand the scope of a layout planner to
innovative or unexpected layouts and not only create stand-
ard solutions.

The reason for these “new” solutions stems from the
declarative paradigm of ASP. Hence, it suffices that the

knowledge expert describes the desired solutions on an ab-
stract level such as “the grid has to contain x racks of size
y and must not overlap with other structures” by using rules
and constraints. The solver will then calculate all answer
sets satisfying the conditions given by the logic program.
Conversely, in modern programming languages, the prob-
lem solving itself has to be defined.

Another consequence of using a declarative approach
is that the generated solutions are independent of the actual
order of the rules in a program. This simplifies the process
of adding or changing constraints in a logic program. This
also allows a step by step approach of implementing the
constraints and focusing on rather difficult problems at the
beginning.

In addition, the resulting answer sets of a logic pro-
gram are in a format that allows further processing. This
means, those answer sets can be, e.g., visualized or filtered.
In the presented case study in Section 4, the answer sets
were visualized in a first step as a 2D layout for a better
comprehensibility and in a second step 3D layouts were
generated from the answer sets.

We illustrated that the presented approach proposes
important groundwork to generate highly constrained
warehouse layouts, and moreover, AI-based approaches
using ASP, therefore, present a promising and interesting
foundation towards solving general highly constrained
problems in practice.

6 FUTURE WORK

The implemented solution generates a large number of
different layouts. As a next step, the evaluation of the gen-
erated layouts has to be implemented. This will be based on
logistics indicators (e.g., picking performance), which are
calculated for each answer set. The user then can decide
based on which indicators the layouts should be optimized
and determine how many layouts are necessary.

Furthermore, aggregating the generated layouts based
on similarities into groups should help navigating through
the answer sets. With these aggregated groups, representa-
tives of each group can be compared at first before doing a
deep dive into a single group. Therefore, such groups and
their criteria have to be developed.

In addition, the generated solutions should be made
explainable using AI-formalisms like justifications [ST16,
PSEK09, CF16]. Such explanations can be visualized by
comprehensible graphs that could help the layout planner
to understand the positions of the different elements inside
a layout and how they were derived from the rules in the
logic program. Such explanations can then be used improve
the refinement of programs to gradually obtain the intended
layouts.

DOI: 10.2195/lj_Proc_kaiser_en_202112_01
URN: urn:nbn:de:0009-14-54219

© 2021 Logistics Journal: Proceedings – ISSN 2192-9084 Page 8
Article is protected by German copyright law

LITERATURE

[AF07] Dieter Arnold and Kai Furmans. Materi-
alfluss in Logistiksystemen: mit 19 Ta-
bellen. Springer, Berlin, 5., erw. aufl
edition, 2007.

[CF16] Pedro Cabalar and Jorge Fandinno. Jus-
tifications for programs with disjunctive
and causal-choice rules. Theory Pract.
Log. Program., 16(5-6):587–603, 2016.

[Dij59] Edsger W. Dijkstra. A note on two prob-
lems in connexion with graphs. Numer-
ische Mathematik, 1:269–271, 1959.

[dKLDR07] René de Koster, Tho Le-Duc, and Kees
Jan Roodbergen. Design and control of
warehouse order picking: A literature
review. European Journal of Operational
Research, 182(2):481–501, October
2007.

[GGN15] Eric H. Grosse, Christoph H. Glock, and
W. Patrick Neumann. Human Factors in
Order Picking System Design: A Con-
tent Analysis. IFAC-PapersOnLine,
48(3):320–325, January 2015. Number:
3.

[GKKS12] Martin Gebser, Roland Kaminski, Ben-
jamin Kaufmann, and Torsten Schaub.
Answer Set Solving in Practice. Synthe-
sis Lectures on Artificial Intelligence
and Machine Learning. Morgan & Clay-
pool Publishers, 2012.

[GL91] Michael Gelfond and Vladimir
Lifschitz. Classical negation in logic
programs and disjunctive databases.
New Gener. Comput., 9(3/4):365–386,
1991.

[Gud10] Timm Gudehus. Logistik: Grundlagen -
Strategien - Anwendungen. Springer,
Berlin, 4., aktualisierte aufl edition,
2010.

[HNR68] Peter E. Hart, Nils J. Nilsson, and Ber-
tram Raphael. A formal basis for the
heuristic determination of minimum cost
paths. IEEE Trans. Syst. Sci. Cybern.,
4(2):100–107, 1968.

[Kov17] György Kovács. Warehouse Design –
Determination of the optimal storage
structure. page 5, 2017.

[Kov21] György, Kovács. Special Optimization
Process for Warehouse Layout Design.
In Károly Jármai and Katalin Voith, ed-
itors, Vehicle and Automotive Engineer-
ing 3, pages 194–205, Singapore, 2021.
Springer Singapore. Series Title: Lec-
ture Notes in Mechanical Engineering.

[KST93] Johannes Köbler, Uwe Schöning, and
Jacobo Torán. Decision Problems, Search
Problems, and Counting Problems, pages
11–50. Birkhäuser Boston, Boston, MA,
1993.

[Man12] Riccardo Manzini, editor. Warehousing in
global supply chain: advanced models, tools
and applications for storage systems.
Springer, London, 2012.

[NMWW18] Ruben Noortwyck, Timo Muüller, Karl-
Heinz Wehking, and Michael Weyrich.
Dezentrale assistierte Planung: Inte-
grierte Layout- und Systemplanung
von Intralogistiksystemen auf Grund-
lage einer agentenbasierten Software.
Logistics Journal: Proceedings, Vol.
2018.

[PSEK09] Enrico Pontelli, Tran Cao Son, and
Omar El-Khatib. Justifications for logic
programs under answer set semantics.
Theory and Practice of Logic Program-
ming, 9(1):1–56, 2009.

[Sch18] Michael Schmidt. Distribution Center
Design Process: ein systemtechnikorien-
tiertes Vorgehensmodell zur Konzept-
planung von Logistikzentren. Logistik
für die Praxis. Verlag Praxiswissen,
Dortmund, 2018. OCLC: 1031719835.

[SMM17] Timothy Sprock, Anike Murrenhoff, and
Leon F. McGinnis. A hierarchical ap-
proach to warehouse design. Interna-
tional Journal of Production Research,
55(21):6331–6343, November 2017.
Publisher: Taylor & Francis eprint:
https://doi.org/10.1080/00207543.2016.
1241447.

[ST16] Claudia Schulz and Francesca Toni. Jus-
tifying answer sets using argumentation.
Theory and Practice of Logic Program-
ming, 16(01):59–110, 2016.

[WS14] Alexandra Wunderle and Tobias Som-
mer. Erfahrung und Augenmaß zählen.
Hebezeuge Fördermittel, (08), 2014.

DOI: 10.2195/lj_Proc_kaiser_en_202112_01
URN: urn:nbn:de:0009-14-54219

© 2021 Logistics Journal: Proceedings – ISSN 2192-9084 Page 9
Article is protected by German copyright law

Pascal Kaiser, M.Sc., Research Assistant at the Chair of
Materials Handling and Warehousing, TU Dortmund Uni-
versity.

Andre Thevapalan, M.Sc., Research Assistant in the work-
ing group Information Engineering at the Chair of Logic
in Computer Science at the Department of Computer Sci-
ence, TU Dortmund University.

Christopher Reining, M.Sc., Chief Scientist at the Chair of
Materials Handling and Warehousing, TU Dortmund Uni-
versity.

Prof. Dr. Gabriele Kern-Isberner, Head of the working
group Information Engineering at the Chair of Logic in
Computer Science at the Department of Computer Sci-
ence, TU Dortmund University

Prof. Dr. Dr. h. c. Michael ten Hompel, Head of the
Chair of Materials Handling and Warehousing, TU Dort-
mund University and Managing director of the Fraunhofer
Institute for Material Flow and Logistics.

Address: Lehrstuhl für Förder- und Lagerwesen, TU Dort-
mund, Joseph-von-Fraunhofer-Str. 2-4, 44227 Dortmund,
Germany
Phone: +49 231 755-2794, Fax: +49 231 755-4768,
E-Mail: pascal3.kaiser@tu-dortmund.de

mailto:pascal3.kaiser@tu-dortmund.de

