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enerating highly constrained warehouse layouts is a 
challenging task for layout planners. Those experts 

create feasible layouts analytically based on their 
knowledge and experience. The presented paper proposes 
an AI-based approach to generate feasible warehouse lay-
outs automatically by using answer set programming. 
The developed implementation is able to generate all fea-
sible combinations for positioning racks inside a given 
layout while satisfying all the applicable constraints. This 
supports layout planners by generating solutions for 
highly constrained problems. 

 [Keywords: warehousing, layout planning, picking, answer set 
programming, logic programming] 

ie Erzeugung gültiger Lösungen für stark einge-
schränkte Lagerlayouts ist eine Herausforderung 

für Layoutplaner. Diese Experten generieren zulässige 
Layouts bisher analytisch basierend auf ihrer Erfahrung 
und ihrem Wissen. Der vorliegende Artikel stellt einen 
KI-basierten Ansatz vor, um zulässige Layouts automa-
tisch mithilfe der Antwortmengenprogrammierung zu 
erzeugen. Das vorgestellte Framework ist in der Lage, alle 
zulässigen Lösungen zu generieren, um eine gewisse An-
zahl an Regalen innerhalb des Layouts zu positionieren. 
Dadurch werden die Layoutplaner bei der Lösung stark 
eingeschränkter Probleme unterstützt. 

[Schlüsselwörter: Layoutplanung, Kommissionierlager, Ant-
wortmengenprogrammierung, Logische Programmierung] 

1 INTRODUCTION  

Warehouse layout planning is considered a poorly 
structured decision problem [Sch18]. There are systematic 
planning approaches to handle these problems, e.g., like 
[Sch18], but so far, the automation of holistic warehouse 
layout planning is considered hardly possible [Gud10]. 
Usually it is executed by interdisciplinary teams whose ef-
ficiency suffers from unclear and conflicting goals. Thus, 
planners heavily rely on their experience to design ware-
houses [WS14]. Drafts of feasible layouts are created ana-
lytically by experts. 

For highly constrained warehouses, it is even more dif-
ficult to find feasible layout options. This occurs for exam-
ple in brownfield projects with given building restrictions 
and other constraints (e.g., existing material flow con-
straints). Planning such highly constrained warehouse lay-
outs can challenge even the experts to an extent where no 
good solutions are found. A reason for that can be the sub-
jective influence of the expert that is based on their experi-
ence and new layout options might not even be considered. 

Those by experts generated layouts can be assessed 
and enhanced by IT-supported methods [Gud10]. Unfortu-
nately, they only consider subproblems of the overarching 
goal and can hardly be deployed without excessive domain 
knowledge [SMM17]. Also, they are often based on ideal-
ized assumptions, such as aisles of the same length, rectan-
gular layouts, the absence of traffic conflicts, and so forth. 
As a result, warehouse planning is a tedious task that com-
bines domain knowledge by experts and restricted applica-
ble methods. 
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Answer set programming (ASP) is an approach for de-
clarative problem solving, suited for solving highly com-
plex problems that are closely connected to domain 
knowledge [GKKS12]. Logic programs enable the model-
ing of those problems. A core advantage of ASP is that a 
user does not have to design the solving process of a prob-
lem, it is simply enough to describe the problem. Based on 
the problem description, the possible solutions for the prob-
lems are generated by a solver, a form of artificial intelli-
gence (AI). 

The goal of this paper is to show that possible ware-
house layouts can be generated with an AI-based approach 
using ASP. There, the expert knowledge has to be formal-
ized in a logic program once. After the formalization of the 
knowledge, the implementation is capable of generating 
every feasible layout for all valid building restrictions and 
constraints. To demonstrate the developed implementation, 
we will create a layout for a manual order picking process 
based on given building restrictions and constraints. 

The remainder of this paper is structured as follows. 
Section 2 gives an introduction into extended logic pro-
grams and warehouse planning. In Section 3, the developed 
implementation is illustrated and key components are ex-
plained. Then the program is used to generate a possible 
layout for a given problem instance (building restrictions, 
number of racks, base position, etc.). Based on the imple-
mentation and the application a discussion about the results 
takes place in Section 5. The final section of this paper will 
give an outlook on future work. 

2 PRELIMINARIES 

This section gives a short introduction into extended 
logic programs and layout planning. 

2.1 EXTENDED LOGIC PROGRAMS 

In ASP, a problem is modelled in the syntax of logic 
programs [GKKS12]. In the following, we look at nondis-
junctive extended logic programs (ELPs) [GL91]. An ELP 
is a finite set of rules over a set C of constants, a set P of 
predicates and a set V of variables. Elements of C∪V are 
called terms1. An atom has the form 

𝑝𝑝(𝑡𝑡1, … , 𝑡𝑡𝑛𝑛) 

with a predicate 𝑝𝑝 of arity 𝑛𝑛 and terms 𝑡𝑡1, … , 𝑡𝑡𝑛𝑛. An atom 
will be called grounded if all terms are constants. A literal 
L is either an atom A (positive literal) or a negated atom ¬A 
(negative literal). For a literal L, the complementary literal 
𝐿𝐿� is ¬A if L = A and A otherwise. For a set X of literals, 𝑋𝑋� 
= {𝐿𝐿� | 𝐿𝐿 ∈ 𝑋𝑋} is the set of corresponding complementary 

 

1 Modern ASP systems also allow function symbols but we will 
omit their definition due to lack of space. 

literals. A set of literals is inconsistent if it contains com-
plementary literals. A default-negated literal L is called a 
default literal, and is written as not L. A rule r is of the form 

L0 :- L1, … , Lm, not Lm+1, … , not Ln. 

with literals L0, . . . , Ln and 0 ≤ m ≤ n. The literal L0 is the 
head of r, denoted by H(r) and {L1, . . . Lm, not Lm+1, . . ., 
not Ln} is the body of r, denoted by B(r). Furthermore, we 
will call B+(r) = {L1, . . . , Lm} the set of positive body liter-
als and B−(r) = {Lm+1, . . . , Ln} the set of negative body 
literals in r. A rule r with 𝐵𝐵(𝑟𝑟) =  ∅ is called a fact, and if 
𝐻𝐻(𝑟𝑟) = ∅, rule r is called a constraint. A rule r is positive 
if it does not contain any default literals, i.e., 𝐵𝐵−(𝑟𝑟) =  ∅. 
An extended logic program is a positive logic program if it 
only comprises positive rules.  

Given an ELP 𝒫𝒫, the herbrand universe 𝒰𝒰𝒫𝒫 is the set 
of all constants 𝒸𝒸 ∈ C occurring in 𝒫𝒫. A grounded rule 
𝑔𝑔𝑟𝑟𝑛𝑛𝑔𝑔(𝑟𝑟) of a rule 𝑟𝑟 ∈ 𝒫𝒫 is obtained by replacing every 
variable of r by a constant 𝒸𝒸 ∈  𝒰𝒰𝒫𝒫 . The grounded pro-
gram 𝑔𝑔𝑟𝑟𝑛𝑛𝑔𝑔(𝒫𝒫) of 𝒫𝒫 is then defined as 

𝑔𝑔𝑟𝑟𝑛𝑛𝑔𝑔(𝒫𝒫) = �𝑔𝑔𝑟𝑟𝑛𝑛𝑔𝑔(𝑟𝑟)
𝑟𝑟∈𝒫𝒫

. 

Naturally, for a variable-free program 𝒫𝒫, it holds that 𝒫𝒫 =
𝑔𝑔𝑟𝑟𝑛𝑛𝑔𝑔(𝒫𝒫). The herbrand literal base ℋℬ𝒫𝒫 of 𝒫𝒫 is the set 
of all grounded literals with predicate symbols p ∈ P occur-
ring in 𝒫𝒫 and constants 𝒸𝒸 ∈ 𝒰𝒰𝒫𝒫. An interpretation ℐ ⊆
 ℋℬ𝒫𝒫  is a consistent set of literals. Given a positive pro-
gram 𝒫𝒫, an interpretation ℐ ⊆ ℋℬ𝒫𝒫  is a model of 𝒫𝒫 if for 
every rule 𝑟𝑟 ∈  𝒫𝒫 the following holds: 𝐻𝐻(𝑟𝑟) ∈  ℐ whenever 
B+(r) ⊆ ℐ and B−(r) ∩ ℐ = ∅. An interpretation ℐ ⊆ ℋℬ𝒫𝒫  
is an answer set of a positive program 𝒫𝒫 if ℐ is a subset-
minimal model of 𝒫𝒫. Answer sets of a program with default 
negation are determined by its reduct. Given an extended 
logic program 𝒫𝒫 and an interpretation ℐ ⊆ ℋℬ𝒫𝒫 , the reduct 
𝒫𝒫ℐ of 𝒫𝒫 relative to ℐ is defined by 

𝒫𝒫ℐ = {𝐻𝐻(𝑟𝑟) :- 𝐵𝐵+(𝑟𝑟). | 𝑟𝑟 ∈ 𝒫𝒫,𝐵𝐵−(𝑟𝑟) ∩ ℐ = ∅}.   

An interpretation ℐ ⊆ ℋℬ𝒫𝒫 is an answer set of an extended 
logic program 𝒫𝒫 if and only if ℐ is an answer set of its re-
duct 𝒫𝒫ℐ. The set of all answer sets of a program 𝒫𝒫 will be 
denoted by 𝐴𝐴𝐴𝐴(𝒫𝒫), and 𝒫𝒫 is called consistent if and only if 
𝐴𝐴𝐴𝐴(𝒫𝒫) ≠ ∅. We say a literal L is derivable in an ELP 𝒫𝒫 if 
and only if 𝐿𝐿 ∈ ⋃𝐴𝐴𝐴𝐴(𝒫𝒫). 

The grounding of ELPs is executed by ASP grounder 
(e.g., gringo) and the answer sets are then computed by 
ASP solvers (e.g., clasp). The implementation described in 
this paper is implemented with the ASP system clingo2 
which uses both clasp and gringo. One major advantage in 

2 https://potassco.org/clingo/ 
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using clingo is the availability of several language exten-
sions. Furthermore, clingo offers the integration of external 
methods (either in the programming language Python3 or 
Lua4) into the solving process. Examples of ASP rules for 
the logistics domain and using the language extensions in 
clingo are given in Section 3. 

2.2 LAYOUT PLANNING 

Designing warehouses is the strategical task of deter-
mining their size, processes, technologies, composition and 
organization in accordance to given requirements. Unfor-
tunately, the task is a poorly structured decision problem 
that suffers from a wide variety of interdependencies. Thus, 
warehouse designers are highly valuable experts. Formal-
izing their knowledge and experience for creating com-
puter-aided tools is expected to facilitate warehouse plan-
ning. 

Several goals can be pursued through warehouse plan-
ning, e.g., minimizing transport intensity, minimizing in-
ventory, maximizing storage capacity or maximizing area 
or space utilization. Ultimately all these goals aim at reduc-
ing costs [AF07, Kov17, NMWW18]. 

The layout planning is one part of the warehouse de-
sign. It focuses on the arrangement of resources and func-
tional areas [AF07]. The layout generation is a critical chal-
lenge within this task. Layouts are dependent on several 
goals and constraints. Thus, layout planning is often char-
acterized as a special optimization problem, because the 
number of alternatives is often infinite. Therefore generat-
ing all layout alternatives is impossible [Kov21]. Currently 
experts rely on their experience when creating possible lay-
outs for further consideration during the planning process 
[WS14]. Kovács concludes in [Kov21]: “a uniform and 
standard procedure for the warehouse layout design is not 
available either in practice or in literature.” 

In order to receive feasible layout alternatives, con-
straints have to be obeyed. The following list contains some 
of the more common constraints in the layout design 
[Kov21, NMWW18]: 

• Architectural constraints (e.g., position of walls, 
gates, supporting pillars) 

• Legal requirements (e.g., emergency exits and fire 
protection) 

• Technical requirements 

• Material flow requirements 

• Financial requirements 

 

3 https://www.python.org/ 

A warehouse consists of different processes. The most 
important processes are receiving, put-away, storing, pick-
ing, sorting and packing. In a warehouse layout, functional 
areas are loosely connected to the aforementioned pro-
cesses. Some processes imply their own functional area 
such as receiving, sorting and shipping. Others share a 
common functional area such as put-away, storing and 
picking. 

Order picking is the process of retrieving items from a 
warehouse to satisfy customer orders. It is usually followed 
by consolidation and packaging. In most cases, these labor-
intensive processes make up more than half of the total op-
erating expenses of a warehouse [dKLDR07, GGN15]. In 
contrast to other warehouse functions, their level of auto-
mation is still relatively low. This is because it remains 
challenging to imitate the cognitive and motor skills of hu-
mans by machines in an economic manner [GGN15]. 
While automated solutions imply standardized layouts, this 
is not the case for manual order picking, making its layout 
planning a challenging task. 

An order picking system’s layout consists of at least 
three basic elements. At the base, an empty collecting unit 
is handed to the picker. This can be a small load carrier, a 
pallet, a cart, etc. At the retrieval locations, the articles are 
stored in a manner that allows for efficient picking. Articles 
are usually stored in racks or on pallets, etc. [Man12]. 
When the picker completes an order line, the collecting unit 
is handed over to the next process step at a drop-off point. 
This may be the same location as the base, or a conveyor 
belt, etc. 

3 IMPLEMENTATION 

The implementation described in this paper serves as 
a general proof of concept. In the following, we will outline 
some key aspects of the implementation w.r.t. layout plan-
ning. The base of the implementation is a logic program 𝒫𝒫 
that contains the encoding of structural warehouse ele-
ments and the definition of dependencies and constraints 
regarding their positioning. 

3.1 OVERVIEW 

The presented implementation constitutes a proof of 
concept for a general framework to integrate answer set 
programming into the workflow of warehouse planning. 
An overview of such a framework is depicted in Figure 1. 
The process workflow starts with the user who can enter 
key instance values, e.g., the size of the warehouse, the 
number of racks inside the warehouse, and their size. This 
instance data is then added to the problem encoding which 
contains the general facts and conditions that hold for the 

4 https://www.lua.org/ 
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intended warehouse layouts. The ASP solver computes the 
answer sets of the logic program where each answer set 
represents a preliminary layout based on the knowledge 
base modelled in the logic program. Subsequently, a Py-
thon application filters out those layouts where certain ad-
ditional constraints are not met. The filtered layouts can 
then be rendered as 2D graphics and displayed to the user. 

  
Figure 1. Framework Overview 

3.2 PROBLEM INSTANCE AND GENERAL ENCODING 

In ASP, logic programs are often divided into the 
problem encoding and the problem instance [GKKS12]. 
The problem encoding comprises those rules that describe 
the general problem that has to be solved whereas the prob-
lem instance contains those rules that establish specific pa-
rameters. The problem instance can, thereby, be viewed as 
the input data for the logic program that varies from case to 
case. 

r1:  size_x(30). r2: size_y(20). 
r3:  coords_blocked(1,1). r4: coords_blocked(1, 2). 
r5:  racks_size(5). r6: racks_quantity(55). 
r7:  handover(cell_line(coords(30, 10), coords(30, 13))). 

The storage area is represented by a grid structure compris-
ing x columns and y rows where a cell stands for a specific 
position in the area and is accessible by its coordinates. 
This kind of representation allows a coarse-grained but 
flexible modeling of the available area. The size of the stor-
age area can be set by literals size_x and size_y. This kind 
of representation offers high flexibility with respect to 
scalability. Each cell has one of three states: 

blocked A blocked cell is not accessible by definition, e.g., 
due to an additional wall, a pillar or other building ele-
ments. 

occupied A cell is occupied if a structural element is placed 
at this position, e.g., (part of) a rack. 

idle A cell is idle if it is accessible but not occupied by a 
structural element. 

 

5 We omitted the corresponding rule for vertical cell lines due to 
space restrictions. 

Blocked cells can be determined by coords_blocked-
literals as exemplified with rules r3 and r4. Other mandatory 
instance values are the rack size (r5), the amount of racks 
that each layout has to contain (r6) and the position of the 
handover (r7). 

In the following, with a path C = {c1, ... , cn}, we mean 
a finite sequence of cells such that cells ci , ci+1 (1 ≤ i < n) 
are adjacent. A path C is a cell line if all cells in C are lo-
cated in either one row or one column of the grid. Two cell 
lines C1, C2 are adjacent if for every cell c ∈ C1 there exists 
a cell c′ ∈ C2 such that c, c′ are adjacent. The handover point 
inside the storage is also represented by a cell line as shown 
in r7. The cell_line-literal has two arguments which repre-
sent both ends of the cell line. 

r8:  distance_relevant(D) :- rack_size(D + 1). 
r9: cell_line_fixed_length(C1, C2, D, h)  
 :- C1 = coords(C1X, C1Y), C2 = coords(C2X, C2Y), 
 cell(C1), cell(C2), C1X == C2X, |C1Y − C2Y | == D,  

 distance_relevant(D), C1 <= C2. 
r10:  cell_line(C1, C2) :-  
 cell_line_fixed_length(C1, C2,_,_). 
r11:  cell_in_cell_line(@getCellOfCellLine(C1, C2), 

  cell_line(C1, C2)) :- cell_line(C1, C2). 
r12:  cell_line_blocked(C1, C2) :-  
 cell_in_cell_line(C, cell_line(C1, C2)), 
 cell_blocked(C). 

Rules r8-r10 define the cell line literals. Rules like r8 serve 
to gather the sizes the cell lines are supposed to have, in this 
case, we only want to compute cell lines that have the same 
length as the racks. If we do not restrict the size of the con-
sidered cell lines, the program would compute all possible 
cell lines of all possible lengths (1 to x or y resp.) which in 
our case is not necessary. Therefore, in this example we re-
strict the relevant cell lines to those that have the length of 
a rack and the base. With rule r9, all horizontal cell lines in 
the grid can be derived that have the relevant sizes5 . With 
r10, we then get a cell_line-literal for every possible cell line 
in the grid that have specified length(s). 

Until now, it can only be derived whether single cells 
are blocked due to the initial instance data. Rule r12 shows 
how we can determine that a cell line is blocked. Intui-
tively, this rule determines that a cell line CL is blocked 
whenever a blocked cell C is part of CL. Here, we use the 
literal cell_in_cell_line to state which cells are contained in 
a given cell line. The cell_in_cell_line-literals are obtained 
by rule r11, using an external Python function @getCel-
lInCellLine that returns for a given cell line all contained 
cells by processing the coordinates of the cell line. 
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Figure 2. Base Location 

3.3 STRUCTURAL ELEMENTS 

The implementation generates layouts where racks, a 
base and a conveyor belt are placed in the storage area. We 
focus on a limited number of conditions and constraints that 
have to be considered when positioning each structural el-
ement. 

r13:  R{rack_position(cell_line(C1, C2))  
 : cell_line_fixed_length(C1, C2, L, _),  
 rack_size(L + 1), cell(C1), cell(C2), C1 < C2}R  
 :- racks_quantity(R). 

r14:  :- rack_position(cell line(C1, C2)), 
  cell_line_blocked(C1, C2). 

r15:  :- rack_position(CL), rack_position(CL2), 
 cell_in_cell_line(C, CL), cell_in_cell_line(C, CL2), 
 CL! = CL2. 

Racks The positioning of the racks are represented by 
rack_position-literals which have an argument cell_line. 
The rack_position-literals in an answer set, therefore, tell 
us where the racks are located in the corresponding layout. 
Rule r13 defines how the rack_position-literals are derived. 
Intuitively, with r13, every answer set of 𝒫𝒫 contains exactly 
R different rack_position-literals. With 
cell_line_fixed_length in B(r13), we furthermore specify the 
positions a rack can have as we are only interested in cell 
lines that have the size of the racks. Rules r14 and r15 illus-
trate how the positioning of the racks can be refined by ad-
ditional constraints. Rule r14 prevents that racks are posi-
tioned on top of blocked cells. By rules r15, answer sets with 
overlapping racks are discarded. Here, the overlapping is 
defined as two racks that share a common cell. Note, that 
the order of the rules does not affect the answer sets and, 
therefore, especially constraints can be added as needed. 

Base and Conveyor Belt The base in our implementation 
is a squared area of cells of size n (which can be prede-
fined), i.e., a sequence C of adjacent cell lines C where each 
C and C itself have size n. The position of the base (see 
Figure 2) depends on the position of the handover (r7), 
among other things. The position of the handover point is 
represented by a cell line located at a border of the ware-
house. Every layout will contain a conveyor belt. To keep 
the implementation simple, we determine that the conveyor 
belt is also a sequence of adjacent cell lines and that the 
conveyor belt does not contain any curves. 

 
Figure 3. Paths of Width 1, 2 and 3 Cells 

3.4 REACHABILITY 

In order to store and retrieve materials in a warehouse, 
each storage compartment needs to be accessible. A rack 
can be accessible from one side or from two sides, this de-
pends on the type and position of the rack. This means, to 
get a valid layout from a logistics perspective, each rack 
has to be accessible from at least one side. In the following, 
with reachability, we will denote the property of a ware-
house layout that there is a path from the base to each rack. 

Finding paths in graph-like structures is itself a com-
plex task [Dij59]. In layout generation based on a grid, the 
problem of reachability is even more complex than stand-
ard pathfinding as we also have to ensure that based on the 
scale of the grid, a path can have an individual path width.  

Based on who (e.g., only persons, forklifts) is using the 
path, a different path width is necessary. The concept of 
path widths is illustrated by Figure 3 where paths with 
widths ranging from one to three cells can be constructed. 
Paths a, b and c constitute standard paths with the width of 
one cell. Paths with a width of two cells can then be formed 
by merging two “adjacent” paths. In this case the combina-
tion of either a and b or b and c are valid paths with a path 
width of two cells. Analogously, a path width of three cells 
can be achieved by combining all standard paths a, b and c 
since each path is adjacent to at least one other path. 

It is easy to see that by taking different possible path 
widths into account, the complexity of computing paths in 
logistics settings increases. Furthermore, logic programs 
themselves do not directly support the utilization of heuris-
tics or brute-force methods as they only allow for a declar-
ative specification of constraints. However, since the an-
swer sets of a logic program represent all possible solutions 
(those where reachability is satisfied and those where it is 
not), testing for reachability can be extracted from the ac-
tual layout generation process. We therefore propose that 
the logic program generates layouts without considering 
reachability and that the resulting layouts are then filtered 
by an additional external application which checks for 
reachability in each layout. The subsequent filtering of im-
practical layouts w.r.t. reachability by an external applica-
tion has two advantages: extracting the reachability prob-
lem allows the usage of existing pathfinding algorithms 
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(e.g., A⋆ search algorithm [HNR68]), and by precomputing 
all possible preliminary layouts by 𝒫𝒫, we now have a deci-
sion problem instead of search problem, meaning, instead 
of computing all paths in a layout (as it would have been 
the case if reachability was considered in the logic pro-
gram), we now only have to decide, whether a layout does 
or does not satisfy reachability. Thus, the delegation of the 
reachability computation to an external script is not more 
complex than computing layouts that consider such con-
straints [KST93]. Rather, by certain improvements to the 
used pathfinding algorithm, we claim that “normally” the 
external filtering is way more efficient. 

4 CASE STUDY 

To illustrate the previous described implementation, a 
small case study was conducted. Therefore, the building re-
strictions of a warehouse are given and the task is to posi-
tion the basic elements of a manual order picking system  

 

 

Figure 4. Basic Layout Without Racks 

 

inside. The warehouse has a length of 30m and a width of 
20m with several restricted areas (see Figure 4). These ar-
eas can be occupied by walls or pillars for example. As 
explained in Section 3.2, the logic program 𝒫𝒫 consists of 
the problem instance and the problem encoding. The prob-
lem encoding consists of the basic knowledge of general 
planning rules, such as the storage area is a grid. In the 
problem instance, the use case specific information is en-
coded. In this case, the grid has 600 cells with 1x1m, 
where 114 cells are occupied. Additionally, the handover 
point to the next functional area is set (yellow squares). 
The base has to be connected to this handover point 
through the conveyor belt. The blocked cells are marked 
with a black square in Figure 4. 

The goal is to position a base (4x4m), if necessary the con-
veyor belts and 55 racks (1x5m) inside the basic layout. In 
this case study, cells containing a rack consist of the rack 
itself and the path in front of the rack. 

 

 

Figure 5. 2D Layout With Racks 
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Figure 6. 3D Layout 

The instance data has to be added as the problem in-
stance to the general problem encoding in order to calculate 
all possible answer sets. In this case, the solver generated 
all 12096 different answer sets in under 35 seconds. This 
implies that in this use case, there are over 12000 possibil-
ities to position the racks inside the layout. Note that since 
this paper aims at a proof of concept, the generated layouts 
comprise all feasible solutions and not exclusively optimal 
solutions. 

After the solver calculated all answer sets, the imple-
mented framework (see Figure 1) can be used to refine a 
layout, give a 2D layout preview and render a 3D model. 
For this case, one feasible layout preview is shown in Fig-
ure 5. 

For a better visualization of the result, the 2D layout 
generated by the program can then be rendered as a 3D 
model (see Figure 6). With this 3D model the warehouse 
planner then can validate the generated layout by their ex-
pert knowledge. 

5 CONCLUSION 

This paper proposed an ASP-based approach to gener-
ate highly constrained warehouse layouts. As shown in the 
case study, an implementation with ASP is able to generate 
all layouts satisfying the constraints in an automated way. 
Using ASP systems like clingo also allow the additional in-
corporation of modern programming languages like python 
(e.g., see function @getCellInCellLine in Section 3.2). 

Besides using the directly generated layouts, the an-
swer sets can also be used to validate manually generated 
layouts by a layout planner or to add missing layouts. It 
should also help to expand the scope of a layout planner to 
innovative or unexpected layouts and not only create stand-
ard solutions. 

The reason for these “new” solutions stems from the 
declarative paradigm of ASP. Hence, it suffices that the 

knowledge expert describes the desired solutions on an ab-
stract level such as “the grid has to contain x racks of size 
y and must not overlap with other structures” by using rules 
and constraints. The solver will then calculate all answer 
sets satisfying the conditions given by the logic program. 
Conversely, in modern programming languages, the prob-
lem solving itself has to be defined. 

Another consequence of using a declarative approach 
is that the generated solutions are independent of the actual 
order of the rules in a program. This simplifies the process 
of adding or changing constraints in a logic program. This 
also allows a step by step approach of implementing the 
constraints and focusing on rather difficult problems at the 
beginning. 

In addition, the resulting answer sets of a logic pro-
gram are in a format that allows further processing. This 
means, those answer sets can be, e.g., visualized or filtered. 
In the presented case study in Section 4, the answer sets 
were visualized in a first step as a 2D layout for a better 
comprehensibility and in a second step 3D layouts were 
generated from the answer sets. 

We illustrated that the presented approach proposes 
important groundwork to generate highly constrained 
warehouse layouts, and moreover, AI-based approaches 
using ASP, therefore, present a promising and interesting 
foundation towards solving general highly constrained 
problems in practice. 

6 FUTURE WORK 

The implemented solution generates a large number of 
different layouts. As a next step, the evaluation of the gen-
erated layouts has to be implemented. This will be based on 
logistics indicators (e.g., picking performance), which are 
calculated for each answer set. The user then can decide 
based on which indicators the layouts should be optimized 
and determine how many layouts are necessary.  

Furthermore, aggregating the generated layouts based 
on similarities into groups should help navigating through 
the answer sets. With these aggregated groups, representa-
tives of each group can be compared at first before doing a 
deep dive into a single group. Therefore, such groups and 
their criteria have to be developed.  

In addition, the generated solutions should be made 
explainable using AI-formalisms like justifications [ST16, 
PSEK09, CF16]. Such explanations can be visualized by 
comprehensible graphs that could help the layout planner 
to understand the positions of the different elements inside 
a layout and how they were derived from the rules in the 
logic program. Such explanations can then be used improve 
the refinement of programs to gradually obtain the intended 
layouts. 
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